REOH: B

Reference book: Artin. Algebra

1. Symmetry &Groups
1.1 34k=3 A 1) 1E % 1 {4

1.1.1 CW-E &
X B —A R BRI A TRE{en, a € Iy}

HAGA €T A —An-Hf . Aikn-H Rl s T-2m n-E0 K", i g T2 M3
K X TF25 0. FRiROer = el N |K™ Y, TR & L.

HFEEHEX = Uey = |K|HInte, N Intef = ¢ unless(n,a) = (m, B)

BN MERNFBEE— AN« (D", S"1) — (e, Oe), HEMRMHITE
D" — S R R BN Intel RIIR. TR MR S

e eqf—immediate face, #Hj#E 55 EMNIHNL N (Eafbtreef, 2
LRI EHEERAR) o WRAA ML fEHE A PR immediate face % R f—~immediate
facefk, MIFRATE MIEEWIE. 1< R TR K ITCHR A M.

AMEEHE: a. MEAROC): SMEEAERANEME: b. BiHibW): S C X
— EEERMERN L SR XA R S, WARhCWETE.

Hatcher - Algebra Topologys i, 7 2B E X o



(1) Start with a discrete set XO, whose points are regarded as 0-cells.

(2) Inductively, form the n-skeleton X" from X"~! by attaching n-cells e’ via maps
@y:S" 1= X""!. This means that X" is the quotient space of the disjoint union
X" '1,D% of X" ' with a collection of n-disks D" under the identifications
X ~ @u(x) for x € dD!. Thus as a set, X" = X" !'[] e where each e is an
open n-disk.

(3) One can either stop this inductive process at a finite stage, setting X = X" for
some n < co, or one can continue indefinitely, setting X = J,, X " In the latter
case X is given the weak topology: A set A C X is open (or closed) iff A n X" is
open (or closed) in X" for each n.

A space X constructed in this way is called a cell complex or CW complex. The
explanation of the letters ‘CW’ is given in the Appendix, where a number of basic
topological properties of cell complexes are proved. The reader who wonders about
various point-set topological questions lurking in the background of the following
discussion should consult the Appendix for details.
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After these examples we return now to general theory. Each cell e} in a cell
complex X has a characteristic map ¢, :Dj— X which extends the attaching map
@4 and is a homeomorphism from the interior of Dy onto ej;. Namely, we can take
®, to be the composition D! — X" '[[ Dl —X" < X where the middle map is
the quotient map defining X™. For example, in the canonical cell structure on S"
described in Example 0.3, a characteristic map for the n-cell is the quotient map
D" —S™" collapsing D™ to a point. For RP" a characteristic map for the cell e’ is
the quotient map D'— RP! ¢ RP" identifying antipodal points of 3D, and similarly
for CP".
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1.1.2 Rigid Built
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Convexity: Omitted.
Isometric maps: Omitted
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Now we consider the classification:



TE1EME g (However the verifications become increasingly complicated as the dimension
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1.1.3 Another perspective: Spherical Tiling

We first admit this theorem: (Gauss-Bonnet) For a sphere triangle ABC,
Area(ABC)=A+B+C—n



Now we construct a spherical tiling from a regular convex polyton: Imagine a light origin
located at the geometric center of the polyton. One can seperate the face of the polyton
into triangles by connecting the center of the face and the midpoint of the edge, thus we
get a triangular separation of the entire surface.

Now we project these triangles (by the light origin) to the circumscribed sphere (assuming
the sphere to be the unit sphere) then we get a spherical tiling. Each part of it is a sphere
triangle.

Because of the Area formula: the area of each part is
= I 22—:1 + 3—2 — T = 71'(% + % — %) Trivial that the tiling contains 4 F parts, thus the
area of each part is 47 /4 E (Same notation)

Now we get % - % = % + % — % + % + % — L= % which is exactly what we
have just achieved in the previous section!

Have a closer look on each part of the tiling, every solutions of the equation <= a
spherical tiling. Moreover, the Gauss-Bonnet theorem implies a well-known result: the
relation between A + B + Cand 7 is determined by the principle curvature integrated
over the manifold.

2. Group: the measure of symmetrics

First we give a definition while lack of rigorous: the Symmetric group of an object X is
the set

Sym(X) :={f: X — X, f bijective, preserving the intrinsic properties of X}
Ex.

X = Set, which does not have any extra structure, it simply becomes the "well-known"
symmetric groups.

X = Vector Space, it has a linear structure, so Sym(X) € Hom(X, X) = End(X)
X = Topology, then f has to be up to isotopic
From this we can see the important structure of groups, now we give the exact definition.

Def:(Group) A set with a binary operation, satisfying certain axioms (omitted)



Ex.Z = (Z,+)

Def:(Order) The order of an element ¢ is the minimum m € Z* s.t. a™ =€

not mentioned yet!

Ex. (us, ) o (Zs, +) = Cs, the last group is cyclic group.
We have infinite cyclic group (Cw, ) = (Z,+)

However, in the finite situations C), = Sym™ (n — gon) (+ means the bijection keeps the
orientation )

This doesn't hold when n — oo since Sym ™ (Clircle) = R/Z.

Def:(Center) The center of a group is the elements that is commutive to every
element in the group.

C(G) =G < G abelian.

2.1 Group Homomorphism

Group Homomorphism is the map between groups preserving group structure:
Def:(Group Hom.) Amapy : G; — G2 s.t. p(ab) = ¢(a)p(b)

Rmk: Group Hom. keeps the identity units and inverse.

Ex.

o:8, — u

(R, +) = (RT,:): z+— €

det : GL(n, F) — (R*,)

Def: Injective, Surjective, Bijective: Omitted



Def: Isomorphism = Inj+Surj - Homomorphism
Def: Isomorphic : Two groups are called isomorphic iff a isomorphism exists.

Def: Automorphism: Isomorphism from a group G to itself.

2.2 Subgroup, Normal Subgroup, Quotient

Def: A subgroup is a subset which has the operation inherited from the orignal
group, and satisfies the group axioms.

Judgement: H < G < HH 'CH

Prop. finite H; < G — NH; < G

Generating: The smallest subgroup containing a certain set.
Def: (Kernel) ¢ : G — H, ker ¢ := ¢ !(ep)

ker p < G; (actually ker p < G)
pinj <= ker = eg

Ex.det : GL(n,R) — (R*,-), hence ker det = SL(n,R)

However quotient of a subgroup does not necessarily have a group structure. This
motivates us to define the following.

Def(Coset): aH = {ah|h € H}
Easy to find that the cosets leads to a equivalent relation.
G = [leq/n aH = [l ,cq/~ Ha Hence |H| | |G|

Def(Norm. SubGrp.): H < G normal < Va € G,aH = Ha <= a 'Ha=H



This necessary to ensure aH - bH = abH

Now we can introduce a group structure on the quotient. It becomes a quotient group
G/H

Rmk. By moduling the left cosets equivalent relation ~j,, we can only get a quotient
(G/H),; but not a quotient group.

Ex. There exists a subgroup which isn't a normal subgroup in D5,

In the finite case: |G/H| = |G|/| H| (Do not use this to prove Lagarange theorem!!!)

2.3 Isomorphism Theorem

1% isomorphism theorem: Fundamental Thm.
One-line description: Imp = G/ ker ¢

One-line Proof: aker ¢ — a

274 jsomorphism theorem: Corresponding Thm.

N < G, N < M < G corresponds with a subgroup in G/ N. Proof: Obvious.

3" jsomorphism thorem: Intersection and Product.
N<dG,H<G,then NH<G,NNH<H,N<NH,NH/N=>~H/(NNH)

(Alt. Version N <M JIG: G/M = (G/N)/(M/N))



2.4 Rigid Body Motion

Def(R™ case):
A translation T;(Z) = Z + v
A rotation R is given by an A € SO(n)

An orthognal transformation is the linear transformation which satisfies

AT = A1
**A reflection is given by reflecting over a hyperplane0 € P C R",dim P =n — 1
Trivial that an orthognal transformation is always isometric.

Thm. Isometric mapy : R™ — R"™ can always be represented as the composition of
translations, rotations, and reflections.

Pf: Wlog let ¢(0) = 0, then ¢ € O(n)
Consider the orthonormal basis e;, easy to find ¢(e;) are still orthonormal basis.

To show that ¢ is always linear (or affine when considering the transition), we have

|2 ¢ keeps inner product H(a’u, i b'U) — au — b’UH2 —0

lp(au + bv) — ap(u) — bp(v)|

(The inner product preserving leads from < f(x), f(y) >= ||f(m)+f(y)||2;||f(x)_f(y)”2)

Consider several examples on R?

(Euler) For a sphere triangle XY Z on the unit sphere: and the inner angle «, 3, v,
R.(27) o Ry(28) o R;(2c) = id

Lem: R,(28) = F,, o F,, where F}, denotes the reflection over the plane
span < z,y > and 8 = /(zy, yz)

Pf: Consider V plane P 1 y

Hence the main theroem is completed, since
R.(2y) o Ry(28) o R;(2a) = Fyp,0 Fy,0 Fy,0 Fyp 0o Fyp 0 Fpy = id



A € Isom(RR™), then A is the product of at most n + 1 reflections.
Pf: Select a reflection such that 0 — ¢(0)

And select n reflections such that e; — ¢(e;)

Classification of finite group SO(3)

2.5 Presentation

(Free Group) Omitted
Suppose G =< X >, exists a group hom. G — Fx, Thus G = Fx/ ker

The kernel is known as the relation. The relation itself has a set of generated relations,
thus G = Fx/(R)

For example D,, =< a,b > /(a™ = 1,b%> = 1,abab = 1)
The key is: why does the dihedral group was determined by this set of relations?

Cayley Graph CG(G) with respect to a set X of generators is a directed graph
whose vertices are the elements of the group G, the edges are {g 5 gz}, r € X

Example CG(Fx), X = {a,b} isa (2, 2)—regular tree.
CG(C,, =< a >) wrt ais a cycle.

CG(D, =< a,b > /(a™ = 1,b®> = 1,abab = 1)) wrt {a, b} is a graph with two
opposite direction cycle.

CG(T=As=<z,y>/(z*=1,9° =1, (zy)°) = 1) z = (12)(34) y = (123)



Rmk. X is a set of generator <= CG(G) wrt X Connected.

Von Dyck Group D(p, q,7) =< z,y,z > /(P = y? = 2" = xyz = 1) Finite
<~ 1/p+1/qg+1/r>1

Sketch.

(<) Direct check.

(=) Ifl/p+1/q+ 1/r < 1 forinstance (2, 3, 7). From previous tiling discussions,
there is a hyperbolic tiling X and its symmetry group actually has three elements
T,y,zs.t.22 =y = 27 = zyz = 1, thus exists a group hom. D(2,3,7) — Sym(X).

However Sym(X) is already infinite, thus D(2, 3, 7) infinite.

(We now see this is also related with the finite subgroup of SO(3))

2.6 Group Actions

G acts on X: (g, z) — gz, call X a G—set (and a group homomorphism
G — Sym(X))

To say it percisely: we need (e, z) — z, (g, (h,z)) — (gh, z)

Example S,,, A, acts on [1n)]
H subgroup acts on G': Left times, Right times, Conjugates.

Cayley: G — S, : trivial.

Orbit, Stablizer: Orb(x) = {gz|g € G}, Stab(z) = {g|gz = =}
Orbit is a equiv. relation. Thus, X = [] Orb(z), take X /G = {Orb}

Stab(z) < G and G/Stab(x) (Cosets L/R) Correspondence to elements of Orb(z), (
gStab(z) <> gx)in particular |G /Stab(x)| = |Orb(x)|, |Stab(x)| = |G|/|Orb(z)]



Call a group action transitive if Orb(z) = X

Thm. Burnside: A finite group G acts on X, let X9 = {z|gz = =}
1X/6] = & 3 |X7]
Proof:

Calculate #{(g, z)|gz = x}.
2_ [Stab(z)| = X x/6 2seon |Stab(z)| = | X/G|G]

On the other hand, > |Stab(z)| = > | XY|

Finite Subgroup of SO(3) : C,,,D,,,T,0,I

Pf: Existence omitted.

Let G < SO(3),

Take @/ = {axis of rotations in G}, P = {polars of A € o/ on the sphere S}
Claim: G acts on P: G(A) is the axis of g ' Rag

Thus P = [] Orb, take |Orb| = o;, |Stab| = r; > 2

Count {(g,p)|9(p) = p,g # 1}

Every g fixes exactly 2 polars (unless) : 2|G| — 2

On the other hand # = > _p(rp, — 1) = >3, 0i(rs — 1) = m|G| — 331, %
Y 1/ri=m—2+2/|G

One can easily find the only possible cases are m = 2 and 3
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2.7 Conjugate Classes

Group G acts on itself, with action (g, a) — gag™*

Cl(a) = {a%g € G},Cl(e) = {e}.If G Abelian, Cl(g) = {g}.If G = GL(n),
Cl = Similarity

Cl(a) = |G|/Z(a)| (Z(a) = Stab(a))

Class Equation:

length 1 orbit

G = HCla = ’Z(G)‘ +Zcza22 ‘Cla‘
Example:
e w2 wil
1. TakeG =Dg,8=1+ 1+ 2 4242
2. If G is a p—group, |Z(@G)| # 1: trivial from the Class Equation.

3. As simple. (View Ajy as the sym. of 12-gon)

Edge:mr  Vertices:+n/3 Faces:+m/5 or £270/5
60=1+ 15 + 20 +( 12412 )

However, normal subgroups must be the union of the classes. While 60/(1 + 15) ¢ Z etc.
4. Class Equations for .S,,.

2 permutations are in the same class <> they have the same type: only need to observe
(123)7 = (9(1)9(2)g(3))

For example: types of S, are (1%), (122), (13), (2%), (4)

6. A, Simple. (n > 5)

Proof: n < 5 checked.
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Suppose A,, checked, for A,, 1

Since A, 1 actson [1 m + 1], Stab(t) = A,, simple.

Consider N < A,,.1: N N Stab(t) < Stab(t)

case 1. 3t, N N Stab(t) = Stab(t)

V(ijk) and (ijk)t € Stab(t) C N = N = A1 0,5,k # 1)

The implication comes from conjugating ¢ and you can get all 3-cycles. (rather than those
who does not contains ?)

case 2.Vt N N Stab(t) =1
Takep C N
2.11f ¢ = (12)(34) - - -

[(123) 71, ¢] = (14)(23) - - - € Stab(t), since m > 5, one can always find a ¢ to cause a
contradiction.(Contradiction comes from [(123) "¢ (123)]¢ ! € N)

2.21f ¢ = (123) - --

[(125) 71, é] = (152)(23¢(j)) Get the contradiction similarly.

Another Proof: Artin.

Key is about the 3-cycles.

2.8 Filtration/Series, Solvable

Subnormal series: 1 = Ny < [Ny <--- < N; = G, define its factors are N; 1 /N;
If the factors are simple, we call the series a composite series.

We can always get a composite series in a finite group G: find maximal proper normal
subgroups.



Thm. (Jordan-Holder, Schreier refinement)

Schreier refinement has a elegant proof by using Zassenhaus lemma. Apply Schreier
refinement on two distinct compositew series we directly get Jordan-Holder theorem.

(Solvable Group) Group G solvable if exists abelian-factor subnormal series.
G solvable, if the derived series(quotienting commutator [G, G|) descend to 1
Solvable is closed under taking subgroups/quotient group/extension: N, G/ N

Proof:

1. N® — gk
2. G® - (G/N)®)

3. Consider surjective group homomorphism ¢ : G — G /N, since G/ N Solvable,
In, p(GM) = (G/N)™ = 1, thus G™ < N, the rest can be deduced from the
solvability of V.

Example/Propopsition:

Spn>5 is unsolvable: Consider its derived series: S;, — A4, — A, — - --

2.9 Practice: Rubik's Cube

Take group Gy =< U, D, L, R, F', B >, where e stands for the standard cases. Trivially
G — 554

We have to relate the product of U, D - - - with the state of the cube.

Assume the cube's center are fixed. Each corner has 3 states( twist® = 1), each edge has 2
states (flip? = 1)



Structure Theorem: G = (Z1 x Z3') x [(Ag x A1z) X Zo)

First we discuss about the semi-direct product. (See the reference article about the
relation between the presentation of linear functions and semi-direct product.)

We are familiar with the inner semi-product:
H<GNJJIGHNN-=1,G=NH,thenG=N x H

In this case H = GG/ N. Moreover, the short exact series(SES) 1 - N — G — H — 1
right splits.

(Examples: 1 — C, — Doy, — po2 — 1; T(n) < Isom(n), Isom(n)/T(n) = O(n), is
Isom =T x O?)

(Examples: Klein Bottle 1 (K B) =< a,b > /(aba'b), one can easily get the split SES
1l o<b>om a<a>1m =ZXZ,p:<a > Aut(< b>),b* = b1

(Question: Zy = Zo X Zo s.d.prod? No!It'snot! ; 1 — Z4 — Qg — Zs — 1 Splits?
No!)

Now we give the prrof of magic cube group structure theorem.

1. (7 — 1) Assign each corner an index. Vg, h € G|, define
Co(g, h) = #twists = > Co'(g,h) € Z/3Z

Here Co® denotes the twists of i — corner (the difference between the start and end
states on ¢ — corner)

Conclusion: Co(g, h) = 0 : It suffices to check generator U, D etc. cases.
Corollary: Given the position and orientations of 7 corners, the last corner is determined.

2. (11 — 1) Similar.



3. Position of edges is in S5, position of corners is in S

Thus exists group homomorphisms G — S12(Ss), we claim
o(e12)o(cg) = 1, where ey - - - are the images in S12(or Sg). (This can be checked
over the generator cases)

Thus we cannot exchange a pair ofcorners without exchanging edge.
4. (twists) V 2 corners(or edges), exists a method that only twisting

them(opposite orientation) without making other changes. (The existences can
be deduced from magic cube techiniques)

5. (3 — cycle) 3-cycle of corners and edges.(This is about positions) (similar to 4:
exists a method that only circulating 3 corners etc.)

6. (Main theorem)

6a. Oy = Zg X Zél < G (This can be deduced from 1,2. Normality is trivial: this
subgroup is only about orientation, without changing the block's positions)

6b. Consider GG/ Oy, this group is only about positioning. (Orientation free)
Obvious that Gy /Oy — S15 x Sg (3. Indicates that A5, Ag Exists in Go/Oy)

Since the existence of 3 — cycle algorithm and A,, is generated by the 3-cycles. We get
A12 X Ag < G()/O[)

Take parity function o - 0 : (G¢/Oy)/(A12 x Ag) — C2 x C3, From 3. we know the
remaining part is a cyclic group Zy = {(1,1), (—1,-1)}

Methods and Techniques:
1. Commutators [a, b] = aba1b~!
So = [U™1, R], then ordSy = 6

Through practice, we discover that:

Sg =Double 2-cycles of Corners; Sg =3-cycles of Edges.



2. Conjugating plays an important role: Sg’ usually does not exchange the exact 3
corners that we want to exchange. (Here the conjugating element g can change
other blocks)

31382.28. ii%g € G, fif5g(1) =4,9(2) =7,9(3) =k, NI

(123)7 = (ijk).

26 HE BRI « B
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W#EAEQ23), AT AR RN ZE R =I5 (ijk), TATH IR —
Ef =gt 4,5, k=X RME T EL, 2,3, f—k(123))5, EMSFR
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Thus through Sg , S 5’, one can complete the positioning stuff.

3. About orientations: SZ also changes the orientations.

2.10 Some other topics

2.10a SU(2), SO(3)
U(n) = {M € Mat,(C)|MM?t = I,}

SU (n) satisifies the SES1 — SU(n) — U(n) — U(1) — 1



SU(2) = {(_aB 'Bd) || + |B)* = 1}, thus SU(2) =~ S3

Recall S 2 RQg, andR3 ~ R < 4,5,k >

For any element ¢ € R3, we have a group homomorphism Qg 1V quq !

Thm. 3 group homomorphism ® : SU(2) — SO(3), withker ® = +1

Proof: Define ® as ¢ — ¢ = R,(26) (where v = (b, ¢,d),cosf = a,sin 0 = +|v|)

Def: RP" = JR"™!  thus RP! = R?/ ~= S/ ~ (v ~ —v) (glue diametrical point)

<—

RP? :lb bT (Ignore the upper hemisphere)(m;RP? =< a,b > /abab, g = 1)

—

a

CPl~C

Recall S™ = R™, (Stereographic Projection)(Ek4%)

We call the operation R" — R~ S, one-point compactrfication.

This a geometric/topological point of view.
Lem. RP3 = §3/ ~= B;(0)/ ~ (v ~ —v) — SO(3)
The last corresponding is ¥ — R, (||v||7)

(SU(2) =2 S3, thus the kernel is +15)



2.10b Hopf fibration
The goal is to get a fibration S x S1 — S3: S, base space, S; fiber type.
SQ%J(CPIZ[Zli,ZQ]

Since S3 = {||z1]|* + ||22||> = 1}, we define the projection S3 — S» to be
(Zl,Z2) — [Zl 8 Zz]

ﬁ eiﬂ-(ol_o?)

Let z; = rjewj,r% + 72 = 1, thus the projection p(21, z2) = 7”2

iﬂ-something}

FlXp = 7'1/7'2, Tp — {(21722) S.t.p(Z1,Z2) =p-c

From previous conditions, T), = S1 x S, which is a bunch of fiber.

This is more or less the view of fibration, however, Ty = S in xy-plane, T, = z — axis,
the fiber p—1(pei™), which is part of T},

2.10c Conjugation class of SU(2)
SU(2) = Ujg<1Cl(a),

a B, |
where Cl(a) = {( 3 _) |with tr = 2a}
-8 a

Since trAM A~ = trM, it can be checked it is indeed an conjugation class.

Each Cl(a) = S*



3. Linear Representation of Finite Groups

(Def: Representation) A representation of a group G on V is a Group
homomorphism p : G — GL(V), (thus V is a representation of G)

Or saying more explicitly, it is a group action G x V' — V| preserving linear structure,

namely g(> > \jv;) = > Aig(v;)

In linear algebra, we usually use matrix form to represent GL(V'), namely GL(n, C)
(resp. a certain set of basis)

(Def: Hom. between Representations) A homomorphism between two
representation is a linear map ¢, such that following graph commutes:

%}
Vv— W
Pvl Pwl
%}
Vv— W
If ¢ is a isomorphism, call the representation isomorphic.

Call the set of homomorphism between representation Homg(V, W)

Namely, Rep™ = Hom(G,GL(n,C))/GL(n,C)

(Def: Sub rep.) Sub rep. V' of V is a subspace such that p (V') C V'

(Def: D.S./D.P.) g(v @ w) = g(v) ® g(w) etc.

Example: A representation: C'\, — G L(V), the image of its generator can be selected
arbitrary. na — nA

Example: A representation: C; — GL(V), generatora — A, A = I,



Example: G a finite abelian group: Va € G, p(a) is a diagnol matrix.

Lemma. If A, B diagonalizable, then A, B can be simultaniously diagonalizable
< AB=BA

Proof:

Suppose A, xn, Brxm

A 0
Thus, A, B Diagonalizable «— C = (0 B> diagonalizable.
(Only need to check the <= Direction: Suppose D = SCS 1, S = <a:1 o w"”") ,
y]_ o o o ym+n

Az = xD 4, By = yD p, namely z,; , y; are eigen vectors, thus
rankS < n +m = rankX + rankY < n + m which leads to the equality, thus
diagonalizable)
Thus in the lemma = direction is trivial.
<If AP = Dy = diag{\iIn,}
AB = BA <— D4B? = BYD 4, expanding in block matrix one can get

Bn, -+ O
Bf =

O .- Bp,

Since BY diagonal, suppose (B?)% Diagonal, and (A)? diagonal obviously, thus we get
the conclusion.

(Another Proof: AB = BA — A, B have common eigen vectors)

Back to the representation of finite Abelian group.

Since commutative, we can find a basis such that the image of every elements is a
diagonla matrix, namely g(e;) = A(g, 7)e;

Thus as an representationV =C <e; > ---dC<e, >



(Def. irreducible) A rep. of G is irreducible, if A non-trivial subrep.

(The 1-dim case p : G — GL(C) = C* is called character)

(Def. Permutation rep.) ps : S, — GL(V) : ps(o)(e;) = ey

(Def. Regular rep.) If |G| = n, exists a regular rep.
prep : G — GL(V), g — p(g)(en) = egn, where the basis of V' is {e;|i € G}

Regular rep. is not irreducible.

Take C < € =) e, >= V) is a non-trival subrep.

(Def. ) Exists a rep. on Homc(V, W)

Forany ¢ € Homc(V,W), g(¢) = pw(g) op o P171 (9)

(Def. Unitary Rep.) U(n) = {M € Mat(C)|MM* = I,}, call a rep unitary if
ImG C U(n).

(A Hermitian form on V is a bilinear form on complex linear space)

(Def.) T € GL(V) is unitary w.r.t.<, > if < T'(v), T(w) >=< v, w >, calling this
unitary form U(V)

(The U(n) Case is w.r.t. standard Hermitian form)

Calling W C V G-stable if G(W) C W

Calling Hermitian form <, > G-stable if < g(v), g(w) >=< v,w >



(Thm. Weyl's Unitary Trick) If |G| < +o00, VV, p, then 3 a G-stable Hermitian form
<, >g, such that p(G) C U(V)

Proof:

V <, >:Take the < v,w >g= ﬁ > e < 9(v), g(w) >

(Thm. Maschke) |G| < oco,every rep. of G is the direct sum of irreducible rep.
Proof:

Lemma(Artin 10.3.4): V is a Hermetian space, p is an unitary rep. on it. Suppose W is G—
invariant subspace, then W, is also G—Invariant. p Is the direct sum of py and py+

Lm pf: Takev € W+, < w, g(v) >=< g 1 (w),v >=0
Lm alt. Pf: Take V = W & W", dprojection 7 : V. — W, x|y = id.

Let mg = é > 9eG gmg~!. Then it is also a projection, and commutes with every element
of h € G.

Then kernel W' = ker 7 is G—Invariant, and

W'NnW = {0},dim W' + dim W = dim V; thus we get a direct G—invariant sum
decomposition.

Back to the Maschke Proof, take the G — stable Hermitian form, and from Lemma we
know if one factor V is not irreducible, then we can decomposite V=W ¢ W+

(Schur's Lemma)
Lem. V irreducible, f € Endg(V) = Homg(V,V) = f=X-Id
Pf: 4\ # 0 Eigenvalue, E) Is eigenspace, then E is G—inv.

f—A-Id € Endg(V) = ker =V. f(g(v)) = g(A(v)) = Ag(v).



Cor. V, W Irreducible, f € Homq(V, W) where V, W is irreducibe.

Then either

(The Unigness of Maschke's Theorem) Suppose we have V' = @WkemW,f’ k|
V= @WléeirrW]:@mk

¢ € Homg(V, V'), Schur Lemma guarentee that for each factor, ¢(V;) C V}/, thus
uniquness.

Irr(Ss)

po = Trivial rep. , p+ = o(g) € C*

p:S, = GL(C,n = &C < e; >) a permutation rep.

Take C* =V = W & C < > e; > recalling that latter part is G—invariant.
Taken =3, W =C<e;—es>®C<es—e3>PC<e;+es+e3>

Ignore the last part,
¢ = (123), p(e1-2) = (e2-3); 7(23) = 7(e2-3) =e1-3 =e1 2 + €23

Thus under the base e;_», es_3, we indeed get a irreducible rep.
0 1 1 1

¢ — , T
1 1 0 -1

Another rep. with a direct geometry view:

cosf) —sinf 1 0
— T >
sinf@ cosf@ 0 -1

or another one:



PR w 0 = 0 1
0 »2)77 7 \1 0
These 3 rep. are all the same, call it pg;.

(By changing basis)

Lem. V(V, p) of S3, p = p¥" @ p?" @ p&
p(#)3 = id, thus with eigen value 1, w, w?
ThenV =V (1) ® V(w) & V(w?)

o7 =L, 7(V(w)) = w™d

V) =v)teva) =Ve V¥

Tensor Product

The basisof V@ Wise; ® f;.

Pf: Span is trivial, suppose > Ajje; ® f; =0
Takee; : V — C,es — ;5

Andwegete; ® f/ : VW — C

Thus from this characterize map, we can get each A;; = 0

Facts: U Q@ (VW)= UV)W
UaeV)oW=UW)s (VeWw)

disomorphism, W @ V* = Hom(V, W)



Plw® f— (w® f)(v) = f(v)w

A€ End(V),B € End(W) — A® B <€ End(V ® W) (If written in matrix form, it
is indeed the matrix tensor perform)

detA ® B = (detA)dimB(detB)dimA

Sym"V =< % Y oes, T(E1® - ®ep) >

Character Theory

(Class Function) G = [ [ C;(Conjugation Class)

A class function ® : G — C, ®(g) = ®(hgh '), thus it is a function of class, namely
®(G) =< 1¢, >, where 1¢,(C;) = d;;

(®(G) denotes the linear space of class functions)

1
Lemma: JHernitian form <, > on ®(G): Take < ®,®’' >= Gl > ®(g)P'(g9)

(Character) A character of representation (p, V) is x, : G — C'g — trp(g)
(PikFdetZ2HAEEZRFEEKRLZ T)

(trp(g) well-defined, since changing basis does not change trace.)

Lemma: x, € ®(G), since conjuating does not change trace.

If p irreducible, say ), is called an irreducible character.(?)



Lemma(Properties)

1. x(1) =dimV

2. x € ®(G)

5. x(97%) = x(9)

4. xv+(9) = x(g7")
5. Xvew = Xv + Xw
6. Xvew = XV ' XW

(Main Theorem) ®(G) =< x,|p € Irr(G) >

In particular, this admits a normal orthogonal basis. (Here the inner product is induced
1 -
€l > 2(9)2'(9))

from the previous Hermitian form < ®, ®' >=

Proof:

Let € Homc(V, W) (irreducible rep. V., W)

1

I > pw(g) o dopy(g)

We get an averaging rep. Hom. ? =

Cor. V2 W — ¢ = 0 (Schur Lemma.) > BgMAg’1 =0

V=W: tr? = A-dimV = tr¢.(Since \ - I,,)

Orthogonal relation:

<xv,xw >=0,VZ2W € Irr(G)

1

Proof: < >=

Y trAgtrB, 1 = (use Artin Lem.10.8.1) = 0

<xv,xv>=1



Proof: Use Previous result (V = W : trf = A-dimV = tr¢.(Since \ - I,,))

Complete:
®(G) = span < x,lp € Irr >
Proof:

If exists another &, such that < &, y; >= 0

Take T, = |—(1;,’ Z@P(g) € Homc(V,V)

Then it is an element of Homg(V, V)

Consider regular rep. We get X,¢(1) = |G|, otherwise 0

1

< XV Xreg >= m ZXV(Q)Xreg(g) = Xv(l) =dimV

Consider preg = ®p;ud, thus d; = dimV;

If p Irreducible, T, = 0, thus T,,, = 0

reg

Then T, > ®(g)eg =0,thus ® =0

1
1]

Thus Completeness.

Cor. #Conj. Class = #Irr(QG)
From the maschke theorem p = 69,0;”, right inner producting p; one get n; =< p p; >

Thus V 2 W <— xv = xw



pe Irr(G) > |lpll =

Character Table. Column: Conjugating Class; Row: Irreducible Rep. The element:
the value.

y 1 1 -1
ye 1 1 -1
Xst 2 —1 0
HIIEAR :

ZX@(Ct)X(Cs) = 5st(‘G‘/‘CsD

See Notetakers version.

Recall C[G] is not only a vector space, but also a group algebra. Since the topic we are
discussing about is representations G — G L(V'). We claim this has a correspondence
with representation of C[G].

Lemma.p: G - GL(V) < p:C[G] — GL(V)

Proof: = Through linear extension; <— Through restriction.

Theorem. |G| < 400, exists an algebra isomorphism:

ClQ] =2 @Bndc(Vi) : ¢ — (ov(9))

Proof: ?(Serre 6.2 V; stands for irreducible representation)



Serre 6.5 (About integralilty of d;)

Lifting of Reps of Quotient group

G — G/N — GL(V) induces a representation from the quotient group rep.
Take the composed representationtobe p = mo p

X(1) =dimV = x(1); x € Irr(G/N) < X € Irr(QG)

Proof:

1
|G|

NV —

> %(0)%(g) = ﬁ X INX(eNx(oN) = 17 X(bx(h) =< x.x >

<X X >=
Define ker x = x 1(x(1)), recall ker p = p~—1(id)

ker y = ker p

Proof: |x(g)| = x(1) <= py = A - I: Consider the diagonalization of p,.

Ifp, =1Id,x(9) = x(1);ifx(9) = x(1) = pg=A-Id&A =1 = p,=1Id

Cor.kerx < G

X € Rep(G),xis aliftof G/N <= N < ker X.(X7ER; 5 _LBUEA [H)

Thm. 31 — 1Correspondence: Rep(G/N) «+» {p € Rep(G)|N < ker p}

(This correspondence can be restricted to irreducible representation)



PrOp. N — ﬁxe]r'r(G) keI‘ X

N<ker x
Proof: Nyerrr(q) ker x = € Nker xir C ker(D - cix;) =kerle, =1

Consider the lifting.

Cor. G is simple <= Vnon trivial x € Irr(G),ker y =1

Examples.
Al = [Ay, Ag] = {(12)(34), (13)(24), (14)(23), 1}, Ay /A, =~ C;

From character table of C3, we get character table of A4.

S4:

Still use the previous subgroups, S4/ A} = Ss, conduct the similar process

Similarly Z(x) = {gl[x(9)| = x(1)}, Z(G) = Nirr Z(x)

Linear Characater
A character x is linear if x(1) = 1
LC(G) = {x linear}

Lemma G’ < ker x(Vx € LC(G))



More precisely, LC(G) = Lifts of Irr(G/G"), |LC(G)| = #Irr(G/G') = |G/G’|
O ¢c LC(G),X € XIrr(G) — © - X € XIrr(G)

(Computing its inner product implies a direct proof)

D2n

Tensor product of characters

Given 2 representations, we can get a tensor product representation via tensor product.

XVew = XV * XW

S XVieWis XVa@Ws =< XViy XVa = © < XWis XWy >
Cor. X 1rr(GxH) = XIrr(G) * XIrr(H)

Def.G - G x G — GL(VQ@W)

L]

4. Mckay Correspondence

Directed Graph.

MGy, =Irr(G)

Given a group |G| < +o0, fixa p € Rep(G), MG(G, p) = ai;
MG, ={pi — pj}

(Here a;7 denote the mutiple number of edges)
a;j = dim Hom(V ® V;, V) =< xXi, X >

Take I'(G) = MG(G < SU(2), pnat)



Lemma. a;; = aj; provided that x(g) = x(g). (Or saying self-dual)

1
|Gl

1
|G

1

Yox(g )xilg xilg™h) = Il

> x(@)xi(g)x;(g) = > x(9)x;i(9)xi(g)

HFIL(G). BCartan fifEC = (cij = 20i; — aij)|g|x|¢|- Here
a;j = dim Homg(V; ® V,V;)

CHIT HAHYLE T X 77 o

finite

G < SU(2),G abelian <= G = C,, <= Vy reducible

Ex.T'(C,) = n — Polygon.

Lemma. 2d; = ) a;;d;

Lemma. a;; = aj;a; =0

Lemma. I' is connected graph.

Pf: 1. Induction.v; € I’y <= v, is a summand of V ®™,

Suppose Jv; & 'y, < xi, X0 >=0

1 +2 +1
H <XirXo >= A7 i(9)x0(9)™ Xol9) =
owerer < i xf >= o S0 = {am ow

Thus, xi(I) + xi(=1)(=1)" + X2 xi(9)Ix»(9) /2™ = 0
Let m — oo, one get x;(I) = xi(—I) =0

Thus contradiction.

Lemma. a;; < 1 provided that G # C; or Cs.




Pf: If Elaij Z 2.

2(dz + dj) = Eazkdl + ajk.dk = 2(dz -+ dj) +etec. — G = 01 or 02.

Thm. Classification.
Z;L,/ﬁ;, Eg¢ 7.3(Exceptional Graphs)

These are called Euclidean type(Since it corresponds to 3d polygon)

Dynkin (Spherical Type): Finiteness
Dynkin (Euclidean Type): Tame

Dynkin (Hyperbolic Type): Wild

Given a connected graph I', Cartan matrix C'. Say vertex set I’y = {0, - - -

Def.

Quadratic Form g(a) = > a? — > i< Cijevicy; Bilinear Form

(o, B) = q(a + B) — q(a) — q(B) = aTCB.

1
Particularly ¢(a) = E(a,a).

Def. Under the condition of q semi-positive determined, let radical

rad(q) = {a|(a, —) = 0}.
Theorem. P. D. <= Dynkin;S. P.D.—P.D. <= FEuclidean
Pf:Say a > Bif a; > By, Vi. o sincere if [ o; # 0.

Lemma. If 30 # 8 > 0, s.t. 8 € rad(q), then §is sincere.



If ¢ is S.P.D., then rad(q) = {QB} N Z"™!

Rmk. For Euclidean T', 38 = (d;) € rad(qr).

Proof: (B, —) = 0.Since (8, p;) = 0, (2 — 2ai;)B; = > ai;B;
IfB3; =0, a;8;=0:a; =04ifB; #0

Since I' conn. 8 = 0, contradiction.

Thus (3 sincere.

g(e) = 32;(1 — ai)ai — 35, cijoioy —=137,; % (G B;

Computation

Thus ¢ S.P.D., g(a) = 0 <= a, B proportional.(Since all connected)

In such case, define A = {a € Z"!|g(a) < 1} set of roots.

Here real roots g(a) = 1,imaginary roots g(a) = 0.

If not Dynkin/FEuclidean, then 3a > 0, g(a) < 0 A (a, e;) < 0Vi

Fact. aI'* CI';T' : ADE.

Letd* € rad(qr+), o = 2d* + e;.

1 1
5 (o, @) =2(d*,d*) +2(d*, &;) + 5(61, ei) <0

q(a) = 5

Thusnot D/E = not P.D./S.P.D.

Previouslywe get E —> S. P. D.



Only need to show D = P.D.:since ¢(a) =0 — «

I
—

SH
~.
N—"

Calculate all roots of A,,, D,

Summing up: ADE Phenomenon.
VI, qr pos. def. <= T Dynkin;S. P.D.—P.D. <= Fuclidean

This is a purely combinatoric stuff. However this phenomenon has a relation with other
branches.

Remark. Dynkin <= Spherical; Fuclidean <= FEuclidean

Qs = {1, +i, +j, £k} = I'(2, 2, 2) a binary dihedral group.

Its Mckay graph is exactly Dy

['(BD3,)
SO(3),SU(2).
Recall SU(2) — SO(3), ®(q) = ¢, then ¢ (R, (6)) = +(cos8/2 + sin /2 - \%H)

Since 21 is the inverse image of I under the map ®, one can easily get:
2] = {1} U {£(coskn/3 + sinkn/3 - v;/||vs||} U {£(vs + v;)/||vs + v4]|}

L{+£ coskn/5 + sinkn/5 - ZUZ/H ZUZH}
5 5

(Note that Sp(1) = SU(2))

Thus using this fact 21, 20, 2T can be written down explicitly.



BI|1 -1 4z y —y 2z —z 22 —2*
X0
X st
Xn
ped
X5
XN
X2
X4
X6

5. Ellipse Cubic Equation & Elliptic Curves

Elliptic Integrals

Def.(Ellipse) 2 /a® + y?/b% = 1

Arc length.

/2
C':4/ \/a2cos2t+b25in2tdt
0

/2
= 4a/ (1 — Asin?¢)Y2dt
0

= 4a /Oﬂ/2 i (11/12) (—\sin?t)"dt

n=0

&nGn

Recall(?) F(i, 7, k;v) = > o2 v

Thus combining with the Wallis Formula we get C' = 2waF'(1/2,—1/2,1; A), where
A =c?/a’

However F(i, j,2j;4h/(1+ h)?) = F(i,i — j+1/2,5+ 1/2;h)

Thus C = w(a + b)F(—1/2,1/2,1; h)



Remark. Kepler 7(a + b); Euler 274/ (a? + b2)/2; Ramanujan
7(3(a +b) — 1/ (a + 3b)(b + 3a))

— t 11— \s?
—Cab / a? — ¢*sin’ dsint:a/ —st
1 —sin’t 0 1—s

1 rdx . o .
=Con— , Where the right hand side integral is called
2 1-x y/z(z — 1)(z — (1 — A2))

2nd type Elliptic Integral. (1st type can be achieved by deleting the x over the fraction
line)

Cubic Equation

Given a cubic equation over R, it can be deduced into a normal form
(x—z—a;/3ag):23+ax+b=0

Cardano's trick:

Sayarootx = u + v,
(ut+v)+a(u+v)+b=0 = ud+v3+ Buv+a)(ut+v)+b=0

Let 3uv + a = O we get ud + v® = —b A (w)? = (—a/3)3

A 3 2
Thus u?,v® = —b/2 + 103" Here A = —(4a” + 27b%), then we get the result

Elliptic Curves

Consider the curve y2 = 23 4 ax + b (From previous discussion we have already noticed
its importance), and we expect it to be defined over C.

Def.(Elliptic Curves) Elliptic Curves is a projective algebra curve (in CP?) of genus 1 with
a specified point O = {0 : 1 : 0}, and it is not singular.



Plane projective curve C's/k is more and less projective varieties. (Here C' s CCP 2)

0 0 0
Say the variety singular at a point p, if —f = —f = —f =0
Ox 0y 0z

Its quite hard to show the equivlance of previous 2 definitions of elliptic curves. But we
can check for curve y? = z3 + ax + b, it satisfies the second definitions.

Remark. In general f(a:, y) = Z aijmiyj )
NP(f) = Newton Polytope = convez hall of (i, 7)

Genus of Algebraic Varieties: Genus Cy = #interior lattice points in NP(f)

Singular Example. Singular case: y? = 23

Theorem. (Abel Group Structure on Elliptic Curves) J an abelian group structure on
Elliptic Curve:

1.Unit = 0 = Infinity Point =0O,P=P+ 0O =0+ P
2.If P= (xp:yp: 1), theninverse element —P = (zp: —yp : 1)
3.P+Q+ R=0 < P,Q, R colinear, namely we define P + ) = —R.

Proof:

Yyp —Yaq
(xp,yr); Q = (29, y0), take s = ————— then
rp —IQ

P =
R=(s>—xzp— zQ,yp + s(zr — zp))

Whenzp = z¢g,yp = —¥yq, through definition we immediately get R = O



Whenzp = z¢g,yp = yg, namely () — P, through taking limits we immediately get the
3:13?D +a

result, where s is the slope of tangent
2yp

Associative Law.

(P+ Q) + R = P+ (Q + R), verified by direct calculation.
Ossia:

SayP+Q=A,Q+R=B.

We want to show —T'= B+ P, —S = A + R are same points.

Suppose S # T',we say 3 lines [y = (Q, P, —A);l, = (R, S, A);ls = (—B, B, 0),
mp = (QaRa _B);m2 = (PaTa B);m?) = (_Aa Aa O)

Sayl = [[1i, m = [[ ms,since S # T,I(T) # 0,7m(S) # 0
Let Vector Space V' = {cubic homogenous poly. in C[z,y, z]},dim V = 10.

WLOG we let P, ), R generic. Consider
W = subspace of V such that it vanishes at + A,+B, P,Q, R, O

dimW =10 — 8 = 2, Z, m € W, and Z, m are linear independent. (Consider its value on
S,T.)

Thus W = span < [, >
However f(z,y, z) = 3 + az2® + 22 —y?ze W

Thus f = M + pm,as S, T € f,i.e. f(S), f(T) = 0, thus A, u = 0, Contradiction!

Remark. Theorem also holds over a general field K: especially a finite field.

For example y? = z° — 2z/(Z/117Z),
E = {(0,0); 00; (2, £2); (4, £1); (5, £4); (8, £1); (10, 1)}, i.e. |E| = 12.



(5,7) + (8,10) = (10, —1)

Elliptic Cryptography
Diffre-Hellmen Key-Exchange Protocol.(DHKE)

1: klzka

e

Archer, - Berseker,
1

3: ky=kg

Transfer information k from Archer to Berseker, where Archer owns a private key a,
Berseker owns a private key b. Berseker decode information through k = kgfl.

Ellip. Agreement on a key: Given a elliptic curve E : y?> = z3 + az + b/(Z/p).

m-P

T

Archer Berseker

\/

n-P

Initial point P and the Elliptic Curve and the prime number p are public. m,n € Z are
resp. Archer and Berseker's private key, they send m - P, n - P to each other, and they can
now own the same key k = (mn) - P.

Now Archer and Berseker safely own the key without letting others now. Through the
same key Archer and Berseker can safely transfer information. (For example Archer sends
k - in formation, Bersecker decode it by dividing k.)

Complex Toris

Given a lattice A = {Zw; + Zws }, w1, ws linear independent.



Theorem.(Uniformization Thm.) Elliptic Curves correspond uniquely to a
complex toris C/A.

We must elaborate this a little bit more: Here the correspondence leads to a complex Lie
group isomorphism. z € C/A — (p(2),2'(2)) € E

Def. Weierstrass function.

1 1 1
2(z) = ) + Z (m - J), through analysis stuff we get p(z) is a
weA—{(0,0)}

meromorphic function, and it converges absolutely and uniformly on C — A

Def. Eisenstein series

_ —k
Gr(A) = eA—Z{(O 0)}w ,A = Z(1, 1), where T is in the upper half plane, k > 2. G, = 0

when k odd. Thus G(A) = G(Z(1, 7)) is a function on HI, and
Gr(T) = Gr(1 +7)
Gr(—771) = TG (7)

Gr(7) converges absolutely.

Proof. Take = the minimum distance between lattice points in A, take
Ann(r,d) = Bo(r + d) — By(r). Then #A N Ann(r,6/2) < 4nr/§

And Ann(n,1) < Const.-n

Thus 3 j,<1 jw]|7* + D lwfz1 w|7F < D wl<1 w|™F + 32, #Ann(n, 1) N A -n*

The second term converges since it has the order n'=*.

1 -
2(2) = =t Yoo 1(2n + 1)Ganya(A) 22"

Direct calculating:



Since i-2) => "o(n+1)z”

1 1, 1 P, o
B e i ) AR e T
P'(2) = =23 cr ﬁ = —2/2° + 3°07,(2n)(2n + 1)Gapia(A) 22
Thus

23(2) = 1/25 + 9G4 /2% + 15Gg + - - -
p2(2) = 4)25 — 24G4/2* — 80Gg + - - -

Then F(z) = p'? — 4p3 + 60G4p + 140G has no negative exponent terms. Thus F
holomorphic and bounded (since periocity).

Thus F' = 0 (Liouville Theorem)

(p,2') satisfies y* = 4x® — gox — g3

Thus there 3¢ : C/A — E,where z ¢ A — [p(2) : p'(2) : 1];z € A — O

Conversely Hy(E/C,Z) = Z ® Z,w1 = [dz/y,ws: = [dz/y

j-Invariant

Given a non-singular elliptic curve y? = z2 + ax + b. We define
4a® 5
J(E) =123 e 123L
4a3 + 272 g5 — 27g2



) 2 Z T1
Sayy* = (x — z1)(xz — z3)(z — x3), take x into ————, We have the form
L3 — T1

(a? —a+1)2

o?(a—1)2

y? = z(x — 1)(z — a), then j(E) = 28 -

Theorem. (E < E') <— A=)\ < j(E) = j(E')
i.e. jis invariant under SL(2, Z) (act on lattice).

Since gg / gg is invariant under SL(2, Z), we immediately get the theorem.

If we quotient equivalent elliptic curve, then 0(E) = H/SL(2,7Z)

Note that PSL(2,7Z) = Sym™ (FG), FG = Farey Graph. Where F'G has type
(00, 00, 0)

A precise construct: FGy = Q = {p/q} + {1/0 = oo},
FGy ={p/q < r/s,|ps —qr| =1}

SL(2,7) acts natually on FG(c0, 00, 00)

l-pg p?
Example ®,/, = ( R

r/8 < p/q = ®p(r/s) < p/q

) fixing p/q and act as rotating p/q:

This is the modular space of elliptic curves.

Some Remarks

Since EC = a torus, Q = {all simple closed curves on T'}: viewed it as a rational
slope line on the complex plane.



If |ps — qr| = 1, |Cp/g N Cyys| = 1.

Proof: Exists a action in SL(2,Z) ontoT — T : Cp,/q +— Coy/1, Cr/s = Cyp1, then
immediately get the result.

Brs =< a,b > /(aba = bab), Z(Brs) — Brs — PSL(2,7)

Consider f = z2 — y3, V(f) = {z® — y® = 0|2,y € C, (z,y) € §° = R3}, this s
exactly the trefoil knot.

Proof of the fact: Since knot can be embedded onto a torus T = S x S, it satisfies
(e?,e%),20 — 3¢ =0
On the other hand |z|? = |y|3&|z|% + |y|* =1 = |z|,|y| can be fixed. Then

= mg e )
y = m, e’ which leads to the result.
— My

Remark. Given a knot K, ; = V(z? = y?). m1(S% — K, ) =< z,y > /(zF = 39)

6. Geometry Mckay Correspondence

Recall. ADE phenomenon

1. Classification of regular 3D polyhedron

2. Spericalt triangle tiling

BinaryD(z? = y? = 2" = zyz = §,6° = 1) — VonDyck(z? = y? = 2" = zyz =
— Triangle(a® = b* = ¢* = 1, (ab)? = (bc)? = (ca)" = 1)

Mckay Graph from Reps of BD.

Kleinian Singularities

Cluster

Quiver

29 = oy A e

Root System (Semi-simple Lie Algebra)



Finite Subgroup of SL(2,C)

Lemma. Any finite subgroup of SL(n,Z) is conjugate to some SU(n).

Proof: Recall weyl's unitary trick.

Table of ADE groups.

An : Cm:n+1 =< ¢ > /¢m = 1a¢m = (wm w—l)

m

D, : BDy(dm =n — 2) =< ¢om, 7 > [(¢™ =72 = —1),7 = (0 ﬁ)

Lemma. C[u, v]® = {p|g(p) = pVg} is a (sub)ring.
Calculate C[u, v]% for G = C,: type A,,.

U Wity ¥ — witv, wiod = wh uw

Thus Clu, v]¢ is generated by u'y’, m|i — j.
Calculate C[u, v]® for G = D,, : type D,,.

P(u) = womu; $(v) = wylv

7(u) = tv; 7(v) = tu
Thus generated by u?v?, u?™ + (—1)™v?™, yv(u?™ — (—1)™v*™)

Thm. G < SL(2,C), denote C*/G = C|u,v]%, then 3P, P;, P3,s.t. C2/G =< P; >

1
The Raynold's operator: R(P) = Gl > gec 9(P)

R : C[u,v] — Clu,v]€ is a surjective operator, thus only need to calculate R(u‘v?).



o 1 o o
For A, R(u'v?) = — Y 1" ¢F ulvd = 6 mod mu‘v’
m
Thus generator P; = u™, P, = v™, P3 = uv. Moreover P;" = P P,

ForD,,
i k(i—j
R(u'v?) = Z% wivd) + g, r(wivl) = — Z

§ :w2(J ( z H—j

0 2mii—j
1

E(uivj + i"udvt) i=j mod 2m

Thus generator P; = u?™ + (—1)™v*™; Py = uv(u?™ — (—1)™v*™); Py = u?v?

(The 2nd line of the result of R(uivj ) can indeed be represented by this 3 generator,
through computaion...)

For Ejg, the generators are

Py = (u* 4+ v*)? — 36utvt (u* +v?)
Py = (u* —v*)? + 16u*v*

P; = uv(u® — v*)
For E7, the generators are

Py = uv(u® — v®)[(u* + v*)? — 36u'v?
Py = (u* +v*)? + 12u*0?
P3 — u202(u4 . U4)2

For Ejg, the generators are

Thm. G < SL(2,C), C?/G = C[z,y, 2]/ f(z,y, 2). ,y, 2 corresponds to P;, P, P;.



T'ype f
A, | zy— 2"lora? £y? — 2!
D, 22+ yly t 2l
Eg z? + 9% + 24
E; z? + 9% + y2l
Ej r? 493 4 2°

Proof: Dimension Reasons (?)

Resolution of Singularities

For the polynomial corresponding to A,,, it corresponds to a cone whennn = 1. i.e.
z? + y? = 22. Observing that (0, 0, 0) is a singular point. We would expect to resolve it.

Now we are going to define rigrously about the resolution of singularities.

_of 9

3! Singularityat O <= (f =0 = 5 o has only one solution (0,0,0)).

Definition(Resolution of a singular) The resolution of a singular algebraic variety
is a smooth variety together with a regular map(morphism) 7 : ¥ — X. Since X

has only one singular point X = X,,, N X, we expect 7 1 (X,) = Xy

Here isomorphism is define as usual in general constructions. ¢ o ¥ = id; ¥ o ¢ = id

Definition(Blow-up at O € C") Let C* x CP" ! = {(z,9)}

Define Blo(C") = V(z;y; = z;y;) 5 cn

ie.m Hzy, -, xn) = (21, -, T0n), (21, -+, Tn))

This blowing up actually add the tangent line information at the origin.

Consider the stropboid as a vivid example.



Definition.(Blow up of a variety) X C C",0 € X,,, Blo(X) = n1(X/{0}) = X

Note that 7~ (0) = (0, CP" '), it's necessary not to add all inverse images into the
blow up since it will destroy the smooth property.

Remark. Blow-up is not necessarily a sing. resolution; Find Minimal Resolution?

Example. Take X = V(y? = z2(z + 1)) c C?
Then X = Blo(X) C V(zv — yu, f)

Here we want to use ¢ = v/u, y = «t to represent the result.

Kleinian Singularities

X = C?%/G := V(f) C C3, here f refer to the generating relation. C|z, v, 2] /(f)
Y C Blo(C?) = {(z,y, 2), [a, b, c}

Thm. Let X — X be a minimal resolution of X, then E = 7 1(0) = UiEAO(CIP’%i),

CP(, N CP}, = {Pomt 3i ~ j in Dynkin Diagram

%) Otherwise

Example. A;.

X =V(zy—2%);Y = V(f,zb = ya,zc = za,yc = zb), E=7"1(0) C Y

Consider the coordinate region U, : a # 0

Through computation we get {(z, v, 2)[a, b, c]} = {(z, ¢*/a*z,c/ax),[1 : c*/a® : c/a]}
Letz — 0,We get ENU, = C(/q); Similarly E N U = C(pp)

For U, region. EN U, = {(0,0,0)[a, b, c|}, ab = c.



Example A,,.

f=xy— 2"
ENU,: (z,c"/a"-z,c/a-z)[1:b/a:c/a] ~Cy
ENU.:a/c-bjc=2""1

Hence we reduce the case to 4,,_».

7. Cluster Theory

Frieze

Definition A frieze pattern of height n consists of (n + 2)— row positive integer
written as a net. s.t. Top row/Bottom row are all 1s.

Phenomenon 1. A lightingbolt (Path from Top to the Bottom) which are made up of 1
determine a frieze pattern uniquely.

(Converse does not holds: Using (2,2,1,3))

Phenomenon 2. All frieze is periodic under glide reflection, whose fundamental domain
(the A, as shown below) is a regular triangle, thus with n(n + 3) /2 non-top/bottom row
elements. (AVAVAVAY)

Call the period of the 1st non trivial row a quddity sequence.

Thm. (Conway-Coxeter) V quiddity seqgene of height n are precisely from



Quiver mutation

1+,

Recall the famailiar sequence {z,}, z,,+1 = ,T1 = a,xs = bhas a period 5.

n—1

(Quiver) A directed graph without self-loop and 2-cycle(parallel opposite edge) is
called a quiver.

Given a initial cluster C' = (Q, z), x = (x;,1 € Qo). i.e. putting a variable on all vertices
of the initial cluster.

Mutation of C'at k € Q)
Stepl.s - k — jthenaddt — j

Step2.t¢ — k, then reverse the arrow. Here the change is made in modification, instead of
adding.

Step3. Kill all 2-cycle.
Step4. Change the point value =} = z;(i # k), z}, =z ([, -, i + [T, oxz))

Lemma. u? = id

Hence its easy to be shown that for a height-2 frieze, the zigzag line (middle 2 roows) are
made exactly by conducting mutation on 1 < —x4 . Hence easy to verify the periodic

property.

Set up. Given a initial cluster C' = (Q, x), one can get all cluster from iteratedly
mutation, (identify them if d isomorphism Q1 — Q2,1 — x5)

A cluster variable is the variables(actually rational function resp. the initial variables) that
appears in the cluster



Polynomial

[Izf

FACTS: 1. Any cluster variable is a Laraunt Polynomial. i.e. z =

> .

Coefficient of the polynomial P(x) is non-negative.

Def. Cluster Exchange Graph: vertex— > cluster; Edge— > Mutation
Thus the CEG of £1— > x4 is exactly a pentagon.

Thm. (Fomin-Zelevinsky)

TFAE:

|ICEG(Q)| < +o0;

() is mutation equivalent to a Dynkin graph, i.e. you can turn the graph into a dynkin one
by some steps of mutations;

Any Q' mutated from () has no double arrow.(Parallel Arrow)

Type A,, cluster <= Frieze(generalized)
At this time, the cluster variables are n(n + 3)/2

A, example has been showned previously, now we compute the A3 case.

Associahedron, Catalan Numbers, Triangulation of (7 + 3)—gon

Consider ways of adding (), each () only involve two parts. Say vertices to be the ways of
adding n ()s on n+2 elements, connect a edge if the ways can be transformed by using
associative law for 1 time, we get a graph. Call this graph a associahedron.

(The famous pentagon is the associahedron for n = 2, i.e. abcd)

This problem has another name: Effective parenthesis.

Binary Tree. A tree with 4 2 leaves, any vertices has exactly 2 branches unless it
reach the leaves.



Any tree corresponds to the way of multiplying the n + 2 variables.

Cm:i<m+1) 27r/ F

= —4’”/ 2™/ 1 — t2dt
~1

s

+00
Thus Z Cpn /22" =1

m=0

1—-—+v1-—4x
g

Proof: C(z) = Y. Cppz™,C(z) = 1 + 2C(z)?, C(z) =

Expanding it using generalized bionomial theorem.

) m+1 /2
— . 4™. / t2m\/1 — t2dt = / sin®™ 6 cos® 6d6
™ 0

(2m — 1)!!

m!

fc /22m+1:l/1 4z
m=0 T™J-1 ‘\/1—5132

Probability Explaination:

Consider a random walk from 0. Each step choose +1/-1 at probability 1/2. View -1 as a
trapped state, then 1 = > C,, /22" = P(arriving at 1)

Since 1-dimensional random walk is always recurrent, then the P should be 1.

Cry1 = #BTn 2

See Notes.

For any elements in BT}, .5, we view it as a series of 7 + 1 pairs of parenthesis and n + 2
variables a1, - - -, a,+2, where each parenthesis contains 2 blocks. (For example (a(bc)) is
a proper series)



We view left parenthesis "(" as "+", variables "a;" as "-"(4 # n + 2). Then we get a "+","-"
sequence which satisfies #"+" in first k elements are no less than #"-".

Thus we get a map: BT, .3 — C)11

For the inverse direction, given a sequence of "+" and "-", we first write the a4, - - -, a,, and
left parenthesis by view "+" as "(", "-" as "a;", and add a,, 5 at the end. Then we add right
parenthesis so that each pair of parenthesis only contain 2 blocks. This can be completed
uniquely since we can add right parenthesis from the right of the sequence. The adding
method is also unique since each pair must contain 2 blocks.

These two operations are indeed inverse. Thus we get the result.

Definition. A triangulation of S = (n + 3)—gon is a collection of diagnols that
divide S into triangles.

Similar to the associahedron, for triangulation we get a exchange graph where vertices are
triangulation, edges are flip. We get a Graph EG(S)

Theorem. |[EG(S)| = Cp11

Proof: For the n + 3-gon, fix an edge, and view the other n + 2 edges as n + 2 variables,
the diagnols can be viewed as the ways of conducting multiplications. Thus it has a
correspondonce with BTj, . Thus the theorem is trivial.

Taking midpoints of edges and diagnols, we immediately get an binary tree which is
exactly the binary tree in the previous correspondonce!

Theorem. V Quddity of frieze of height n, it arises from a triangular 7', where a; is
the angle of T’;



Lemma. (m + 2)Cp,11 = 2(2m + 1)C,,

Theorem. Exists a bijection: {cluster variables} <+ {diagonols}, such that
exchange relation becomes Ptolemy relation.

Moreover, variable on the diagonol i <+ j has the form Z " [z, y;|/ [ [, -, T

Remark. For the meaning of y;, Since the 1s in the frieze are actually edges of the polyton.
Thus one can replace 1s with y;s temporarily.

Proof: Given x1,- - -, x, whereas the diagonals have a common point. We claim that 3!
clusters forall diagonals such that Ptolemy relations are satisfied.

It suffices to discribe how quiver corresponds to the diagonals. However this is obvious
since mutate at a point (or to say at a diagonal) is equivlant to conduct a fliping
operation. The variable changes are exactly satisfying the Ptolemy relation. (Through a

local check)

Thus all clusters mutated from A,, are exactly triangulation of the polygon.

Thus the rest is to say given a set of edge variable and the initial variables. This is an
elementary result however. One can easily deduced it by induction.

Corollary. This bijection induces EG(S) = CEG(S).

Corollary. V general freize comes from cluster algebra of type A,, (in the sense that

01 12 23 34 45 56
e 13 24 35 46
03 14 25 36 B |
04 15 2% , here 7j denotes the diagonal
05 16
06

numebr of ¢ +— 7)

Corollary.(Conway-Coexter) d bijection between EG(S) and the integral frieze of height
n.



Proof: Givena T' € EG(S)

Vit = #matchings of {(Vi € AF, for each s < k < t}, such that AF € T

Lemma. V; = V,,. Checking that the complement mathcing satisfies the desired case.
Lemma. V; satisfies the Ptolemy relation.

Lemma. V quddity of an integral frieze, J1.

Take the largest Vi, consider the edges Vi ;11), Vs(¢—1), then

Vier)t-1) = (Vs@r1) + Vie-1))/ Vst < 2.1f the value equals 2. Then

Vs(t+1) = Vsz—1) = Vist, suppose no 1 exists, then all V,, = V4, contradiction.
Lemma.(Buliding) If 31 on the quddity, i.e. a; = 1, then exists a quddity by deleting a;,
then exists a quddity aq,---,a;_1 — 1,a;1.1 — 1, -+, a,. (The idea is deleting a corner of

the polygon S)

Lemma.(Gluing) We can insert a 1 in the quddity, the idea is adding the corner on the
polygon.

Lemma. If quiddity is F'(T') for some T, then the building is F'(T')

By lemmas above, the V; we constructed indeed induces a frieze.

Now we prove the previous theorem. First we recall the description of Fomin-Zelevinsky
theorem.

Thm. (Fomin-Zelevinsky)
TFAE:
|ICEG(Q)| < +o0;

() is mutation equivalent to a Dynkin graph, i.e. you can turn the graph into a dynkin one
by some steps of mutations;



Any Q' mutated from () has no double arrow.(Parallel Arrow)

Proof: If a parallel arrow exists, through elementary check one can get it's impoosible to
get the ;1 =3 o back again.

If a graph is not Dynkin, there must exists a Euclidean graph as subgraph. Through direct
check one can get A,,, Jjn, En will induce a double arrow.

(One should also check D,,, E,, leads to a finite CEG(Q).)

8. Lines in surfaces

A plane section of a conic is called a quadratic curve. It has a genereal form
Az? + Bxy+ Cy? + Dz + Ey+ F =0,0orz7Qx = 0.

Quadratic Surfaces

For quadratic surfaces in CP3, it is always projectivly equivalent to zy = zw
It is doubly ruled: {z = Az;y = A tw} or {z = dw;y = A 12}

For the converse, say z = az + bw, y = cz + dw, (z, y, 2z, w) lie on the quadratic surface
if and only if ac = bd = 0, hence the result.

Cubic Surface

Fermat Cubic 23 + ¢® + 23 + w3 =0

For the lines, wlog (m) — <a b) (z)
Y c d) \w

By solving this we get  + w/z = 0; y + w*w = 0, or cyclic the z, y, 2, w.



By computing we get each line intersect with 10 lines, have no intersection with 16 lines.
We define Con f(L): such that vertices are the lines, link a edge if they intersect.

Lem. Sym(Conf(L)) = W(Es), where W is the Weyl Group.

1 -1

a.

W(Q) =< a1, -,an|a? = 1,aa;a; ;

= e(i «» j);a;a5a; = aja;a;(i < j) >

Clebsch Surface
Asurfacein CP*> 23 =0Nn> z; =0
Consider plane in the 3-manifold Y z?, and intersect it with the plane Y z; = 0

L be the planes in the 3-manifold, ¢ be the 5th-unit root. in which 15 iz, =2 B &E = T

120: 2,00 =0, 2, =0.

Let m be all smooth cubic in CP1?

Thenm = {(I, z)|a line in © € m} is a 2-cover of m.

Lemma. V Cubic Surface = blow-up of CP? at 6 points.

27 = 15(line passes through 6 pt) + 6(blow up of 6 pt) + 6(blow up of 6 conics)
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