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1. Symmetry&Groups  

1.1 3维空间的正多⾯体  

1.1.1 CW-复形  

上的⼀个胞腔复形是指⼀个⼦集族

且每个 称为⼀个n-胞腔。全体n-胞腔构成的⼦集族为n-⾻架 ，设它们中所有元素的并
集 视为 的⼦空间。称边界 ，于是也可定义胞腔的内部。

且⼦集族满⾜ 且

且每个胞腔 和它的边界偶存在⼀个满态射 ，且它限制在
上是到内部 的同胚。于是每个胞腔都是紧的。

称 是 的⼀个immediate face，若前者与后者的内部的交为空（要么指标完全相同，要
么前者维度更低）。如果两个胞腔能通过有限的immediate face关系形成⼀个immediate 
face链，则称前者为后者的⾯。⾯关系下的极⼤元称为主胞腔。

若胞腔复形满⾜：a. 闭包有限(C)：每个胞腔有有限个接触⾯；b. 弱拓扑(W)： 闭
它与任意胞腔的交集是这个胞腔的闭集，则称为 复形。

Hatcher - Algebra Topology给出了等价的定义。



要从这个定义得到上⽂中定义的对空间偶的映射 ，只需要考虑如下的特征映射：

欧拉⽰性数 ，对于CW复形

这有两个⽅式证明：⼀是利⽤同调： 实际上是同调群维数的差，另⼀是利⽤拓扑：考
虑复形的加细（与多边形的情况类似），但是这两个证明⽆论详细写出哪⼀个都会使内容失
控，因此略去。

1.1.2 Rigid Built  

⼀个多⾯体(Polytope)是⼀个CW复形，且满⾜任何j-胞腔都在 的⼀个 仿射⼦空间内。

Convexity：Omitted.

Isometric maps：Omitted

正多⾯体：⼀个多⾯体是正多⾯体如果对于每条胞腔升链之间都有等距变换。

Now we consider the classification:



存在性略(However the verifications become increasingly complicated as the dimension 

rises. For example: )

分类的唯⼀性：

引理： 的正整数解为

定理：三维空间中仅有5种正多⾯体。

a. 这个多⾯体的每个2-胞腔都是⼀个2维polygon：n-gon（ ）

b. 每个顶点均在 条棱中（ ）

，于是

，于是 ，但 ，于是

这个⽅程有意义的解数有限。

 

1.1.3 Another perspective: Spherical Tiling  

We first admit this theorem: (Gauss-Bonnet) For a sphere triangle , 



Now we construct a spherical tiling from a regular convex polyton: Imagine a light origin 
located at the geometric center of the polyton. One can seperate the face of the polyton 
into triangles by connecting the center of the face and the midpoint of the edge, thus we 
get a triangular separation of the entire surface.

Now we project these triangles (by the light origin) to the circumscribed sphere (assuming 
the sphere to be the unit sphere) then we get a spherical tiling. Each part of it is a sphere 
triangle.

Because of the Area formula: the area of each part is 
. Trivial that the tiling contains  parts, thus the 

area of each part is  (Same notation)

Now we get  which is exactly what we 
have just achieved in the previous section!

 

Have a closer look on each part of the tiling, every solutions of the equation  a 
spherical tiling. Moreover, the Gauss-Bonnet theorem implies a well-known result: the 
relation between and  is determined by the principle curvature integrated 
over the manifold.

2. Group: the measure of symmetrics  

First we give a definition while lack of rigorous: the Symmetric group of an object  is 
the set 

Ex.

, which does not have any extra structure, it simply becomes the "well-known" 
symmetric groups.

, it has a linear structure, so 

, then  has to be up to isotopic

From this we can see the important structure of groups, now we give the exact definition.

Def:(Group) A set with a binary operation, satisfying certain axioms (omitted)



Ex. 

Def:(Order) The order of an element  is the minimum 

Ex. , the last group is cyclic group.

We have infinite cyclic group 

However, in the finite situations  (+ means the bijection keeps the 
orientation )

This doesn't hold when  since .

 

Def:(Center) The center of a group is the elements that is commutive to every 
element in the group.  

 

2.1 Group Homomorphism  

Group Homomorphism is the map between groups preserving group structure:

Def:(Group Hom.) A map

Rmk: Group Hom. keeps the identity units and inverse.

Ex.

Def: Injective, Surjective, Bijective: Omitted



Def: Isomorphism = Inj+Surj - Homomorphism

Def: Isomorphic : Two groups are called isomorphic iff a isomorphism exists.

Def: Automorphism: Isomorphism from a group  to itself.

 

 

2.2 Subgroup, Normal Subgroup, Quotient  

Def: A subgroup is a subset which has the operation inherited from the orignal 
group, and satisfies the group axioms.

Judgement: 

Prop. 

Generating: The smallest subgroup containing a certain set.

Def: (Kernel) 

Ex. , hence 

 

However quotient of a subgroup does not necessarily have a group structure. This 
motivates us to define the following.

Def(Coset): 

Easy to find that the cosets leads to a equivalent relation. 

  Hence 

Def(Norm. SubGrp.):  normal 



This necessary to ensure 

Now we can introduce a group structure on the quotient. It becomes a quotient group 

Rmk. By moduling the left cosets equivalent relation , we can only get a quotient 
 but not a quotient group.

Ex. There exists a subgroup which isn't a normal subgroup in 

 

In the finite case:  (Do not use this to prove Lagarange theorem!!!)

 

2.3 Isomorphism Theorem  

 isomorphism theorem: Fundamental Thm.

One-line description: 

One-line Proof: 

 

 isomorphism theorem: Corresponding Thm.

,  corresponds with a subgroup in . Proof: Obvious.

 

 isomorphism thorem: Intersection and Product.

, then 

(Alt. Version )

 

2.4 Rigid Body Motion



2.4 Rigid Body Motion  

Def(  case): 

A translation  

A rotation  is given by an 

An orthognal transformation is the linear transformation which satisfies 

**A reflection is given by reflecting over a hyperplane , 

Trivial that an orthognal transformation is always isometric. 

Thm. Isometric map  can always be represented as the composition of 
translations, rotations, and reflections.

Pf: Wlog let , then 

Consider the orthonormal basis , easy to find  are still orthonormal basis.

To show that  is always linear (or affine when considering the transition), we have 

(The inner product preserving leads from )

 

Consider several examples on 

(Euler) For a sphere triangle  on the unit sphere: and the inner angle ,  

Lem:  where  denotes the reflection over the plane 
 and 

Pf: Consider 

Hence the main theroem is completed, since 



 

, then  is the product of at most  reflections.

Pf: Select a reflection such that 

And select  reflections such that 

 

Classification of finite group 

 

2.5 Presentation  

(Free Group) Omitted

Suppose , exists a group hom. , Thus 

The kernel is known as the relation. The relation itself has a set of generated relations, 
thus 

 

For example 

The key is: why does the dihedral group was determined by this set of relations?

Cayley Graph  with respect to a set  of generators is a directed graph 

whose vertices are the elements of the group , the edges are 

Example ,  is a regular tree.

 is a cycle.

 is a graph with two 
opposite direction cycle.



Rmk.  is a set of generator   Connected.

 

Von Dyck Group  Finite 

Sketch. 

 Direct check.

  If  for instance . From previous tiling discussions, 
there is a hyperbolic tiling  and its symmetry group actually has three elements 

, thus exists a group hom.  . 
However  is already infinite, thus  infinite.

(We now see this is also related with the finite subgroup of )

2.6 Group Actions  

G acts on X: , call  a set (and a group homomorphism 
) 

To say it percisely: we need 

 

Example  acts on 

 subgroup acts on : Left times, Right times, Conjugates.

Cayley: : trivial.

 

Orbit, Stablizer: 

Orbit is a equiv. relation. Thus, , take 

 and  (Cosets L/R) Correspondence to elements of , (
)in particular 



 

Call a group action transitive if 

 

Thm. Burnside: A finite group  acts on , let 

Proof:

Calculate .

 

On the other hand, 

 

Finite Subgroup of 

Pf: Existence omitted.

Let , 

Take , 

Claim:  acts on :  is the axis of 

Thus , take 

Count 

Every  fixes exactly 2 polars (unless) : 

On the other hand 

One can easily find the only possible cases are 



https://groupprops.subwiki.org/wiki/Classification_of_finite_subgroups_of_SO(3,R)

 

2.7 Conjugate Classes  

Group  acts on itself, with action 

. If  Abelian, . If , 

Class Equation:

Example:

1. Take , 

2. If  is a group, : trivial from the Class Equation.

3.  simple. (View  as the sym. of 12-gon) 

However, normal subgroups must be the union of the classes. While  etc.

4. Class Equations for .

2 permutations are in the same class  they have the same type: only need to observe 

For example: types of  are 

5. 

6.  Simple. 

Proof:  checked.

https://groupprops.subwiki.org/wiki/Classification_of_finite_subgroups_of_SO(3,R)


Suppose  checked, for 

Since  acts on ,  simple.

Consider : 

case 1. , 

 ( )

The implication comes from conjugating  and you can get all 3-cycles. (rather than those 
who does not contains )

case 2.  

Take 

2.1 If 

, since , one can always find a  to cause a 
contradiction.(Contradiction comes from )

2.2 If 

 Get the contradiction similarly.

 

Another Proof: Artin.

Key is about the 3-cycles.

2.8 Filtration/Series, Solvable  

Subnormal series: , define its factors are 

If the factors are simple, we call the series a composite series.

We can always get a composite series in a finite group : find maximal proper normal 
subgroups.



Thm. (Jordan-Holder, Schreier refinement)

Schreier refinement has a elegant proof by using Zassenhaus lemma. Apply Schreier 
refinement on two distinct compositew series we directly get Jordan-Holder theorem.

 

(Solvable Group) Group  solvable if exists abelian-factor subnormal series.

 solvable, if the derived series(quotienting commutator ) descend to 

Solvable is closed under taking subgroups/quotient group/extension: 

Proof: 

1. 

2. 

3. Consider surjective group homomorphism , since  Solvable, 
, thus , the rest can be deduced from the 

solvability of .

 

Example/Propopsition:

 is unsolvable: Consider its derived series: 

 

 

2.9 Practice: Rubik's Cube  

Take group , where  stands for the standard cases. Trivially 

We have to relate the product of  with the state of the cube.

Assume the cube's center are fixed. Each corner has 3 states( ), each edge has 2 
states ( ) 



 

Structure Theorem: 

 

First we discuss about the semi-direct product. (See the reference article about the 
relation between the presentation of linear functions and semi-direct product.)

 

We are familiar with the inner semi-product: 

In this case . Moreover, the short exact series(SES)  
right splits.

(Examples: ; , is 
? )

(Examples: Klein Bottle , one can easily get the split SES 
 )

(Question:  No! It's not! ;  Splits? 
No!)

 

Now we give the prrof of magic cube group structure theorem.

1. ( ) Assign each corner an index. , define 

Here  denotes the twists of  (the difference between the start and end 
states on )

Conclusion:  : It suffices to check generator  cases.

Corollary: Given the position and orientations of  corners, the last corner is determined.

2. ( ) Similar.



3. Position of edges is in , position of corners is in 

Thus exists group homomorphisms , we claim 
. (This can be checked 

over the generator cases)

Thus we cannot exchange a pair ofcorners without exchanging edge.

4. ( )  2 corners(or edges), exists a method that only twisting 
them(opposite orientation) without making other changes. (The existences can 
be deduced from magic cube techiniques)

5. ( ) 3-cycle of corners and edges.(This is about positions) (similar to 4: 
exists a method that only circulating 3 corners etc.)

6. (Main theorem)

6a.  (This can be deduced from 1,2. Normality is trivial: this 
subgroup is only about orientation, without changing the block's positions)

6b. Consider , this group is only about positioning. (Orientation free)

Obvious that  (3. Indicates that  Exists in )

Since the existence of  algorithm and  is generated by the 3-cycles. We get 

Take parity function , From 3. we know the 
remaining part is a cyclic group 

 

Methods and Techniques:

1. Commutators 

, then 

Through practice, we discover that:

Double 2-cycles of Corners; 3-cycles of Edges.

 



2. Conjugating plays an important role:  usually does not exchange the exact 3 
corners that we want to exchange. (Here the conjugating element  can change 
other blocks)

Thus through , one can complete the positioning stuff.

 

3. About orientations:  also changes the orientations.

 

2.10 Some other topics  

2.10a  

 satisifies the SES 



, thus 

Recall ，and 

For any element , we have a group homomorphism 

Thm.  group homomorphism , with 

Proof: Define  as  (where )

 

Def:  , thus  (glue diametrical point)¶

 (Ignore the upper hemisphere)( , )

 

Recall , (Stereographic Projection)(球极)

We call the operation  one-point compactrfication.

 

This a geometric/topological point of view.

Lem. 

The last corresponding is 

( , thus the kernel is )

 



2.10b Hopf fibration  

The goal is to get a fibration :  base space,  fiber type.

Since , we define the projection  to be 

 

Let , , thus the projection 

Fix , 

From previous conditions, , which is a bunch of fiber.

 

This is more or less the view of fibration, however,  in xy-plane, , 
the fiber , which is part of 

 

2.10c Conjugation class of  

, 

where 

Since , it can be checked it is indeed an conjugation class.

Each 

 

3. Linear Representation of Finite Groups



3. Linear Representation of Finite Groups  

(Def: Representation) A representation of a group  on  is a Group 
homomorphism , (thus  is a representation of )

Or saying more explicitly, it is a group action , preserving linear structure, 
namely 

 

In linear algebra, we usually use matrix form to represent , namely 
(resp. a certain set of basis)

 

(Def: Hom. between Representations) A homomorphism between two 
representation is a linear map , such that following graph commutes:

If  is a isomorphism, call the representation isomorphic.

Call the set of homomorphism between representation 

Namely, 

 

(Def: Sub rep.) Sub rep.  of  is a subspace such that 

(Def: D.S./D.P.)  etc.

 

Example: A representation: , the image of its generator can be selected 
arbitrary. 

Example: A representation: , generator 



Example:  a finite abelian group:  is a diagnol matrix.

Lemma. If  diagonalizable, then  can be simultaniously diagonalizable 

Proof:

Suppose 

Thus,  Diagonalizable  diagonalizable.

(Only need to check the  Direction: Suppose ，

, namely  are eigen vectors, thus 
 which leads to the equality, thus 

diagonalizable)

Thus in the lemma  direction is trivial.

 If 

, expanding in block matrix one can get 

Since  diagonal, suppose  Diagonal, and  diagonal obviously, thus we get 
the conclusion.

(Another Proof:  have common eigen vectors)

 

Back to the representation of finite Abelian group.

Since commutative, we can find a basis such that the image of every elements is a 
diagonla matrix, namely 

Thus as an representation 

 



(Def. irreducible) A rep. of  is irreducible, if  non-trivial subrep.

(The 1-dim case  is called character)

 

(Def. Permutation rep.) 

(Def. Regular rep.) If , exists a regular rep. 
, where the basis of  is 

Regular rep. is not irreducible.

Take  is a non-trival subrep.

 

(Def. ) Exists a rep. on 

For any , 

 

 

(Def. Unitary Rep.) , call a rep unitary if 
.

(A Hermitian form on  is a bilinear form on complex linear space)

(Def. )  is unitary w.r.t.  if , calling this 
unitary form 

(The  Case is w.r.t. standard Hermitian form)

 

Calling  G-stable if 

Calling Hermitian form  G-stable if 



(Thm. Weyl's Unitary Trick) If , then  a G-stable Hermitian form 
, such that 

Proof:

: Take the 

 

（Thm. Maschke) ,every rep. of  is the direct sum of irreducible rep.

Proof: 

Lemma(Artin 10.3.4):  is a Hermetian space,  is an unitary rep. on it. Suppose  is 
invariant subspace, then  is also Invariant.  Is the direct sum of  and 

Lm pf: Take , 

Lm alt. Pf: Take ,  projection , .

Let . Then it is also a projection, and commutes with every element 

of .

Then kernel  is Invariant, and 
; thus we get a direct invariant sum 

decomposition.

 

Back to the Maschke Proof, take the  Hermitian form, and from Lemma we 
know if one factor  is not irreducible, then we can decomposite 

 

(Schur's Lemma)

Lem.  irreducible, 

Pf:  Eigenvalue,  Is eigenspace, then  is inv.

. .



Cor.  Irreducible,  where  is irreducibe.

Then either 

 

(The Uniqness of Maschke's Theorem) Suppose we have , 

, Schur Lemma guarentee that for each factor, , thus 
uniquness.

 

 

 a permutation rep.

Take  recalling that latter part is invariant.

Take 

Ignore the last part, 

Thus under the base , we indeed get a irreducible rep.

 

 

Another rep. with a direct geometry view:

 

or another one:



 

These 3 rep. are all the same, call it .

(By changing basis)

 

Lem.  of , 

, thus with eigen value 

Then 

, 

 

Tensor Product  

The basis of  is .

Pf: Span is trivial, suppose 

Take 

And we get 

Thus from this characterize map, we can get each 

 

Facts: 



Pf: 

 (If written in matrix form, it 
is indeed the matrix tensor perform)

 

 

Character Theory  

 

(Class Function) (Conjugation Class)

A class function , thus it is a function of class, namely 
, where 

(  denotes the linear space of class functions)

Lemma: Hernitian form  on :  Take 

 

(Character) A character of representation  is 

(不选择det是因为它丢失的信息太多了)

(  well-defined, since changing basis does not change trace.)

 

Lemma: , since conjuating does not change trace.

If  irreducible, say  is called an irreducible character.(?)



 

Lemma(Properties)

1. 

2. 

3. 

4. 

5. 

6. 

 

(Main Theorem) 

In particular, this admits a normal orthogonal basis. (Here the inner product is induced 

from the previous Hermitian form )

Proof:

Let  (irreducible rep. )

We get an averaging rep. Hom. 

Cor.  (Schur Lemma.) 

.(Since )

 

Orthogonal relation:

Proof: 



Proof: Use Previous result ( .(Since )) 

 

Complete:

Proof:

If exists another , such that 

Take 

Then it is an element of 

 

Consider regular rep. We get 

Consider , thus 

 

If  Irreducible, , thus 

Then , thus 

Thus Completeness.

 

Cor. 

From the maschke theorem , right inner producting  one get 

Thus 



 

 

Character Table. Column: Conjugating Class; Row: Irreducible Rep. The element: 
the value. 

 

列正交：

See Notetakers version.

 

Recall  is not only a vector space, but also a group algebra. Since the topic we are 
discussing about is representations . We claim this has a correspondence 
with representation of .

Lemma. 

Proof:  Through linear extension;  Through restriction.

Theorem. , exists an algebra isomorphism: 

Proof: ?(Serre 6.2  stands for irreducible representation)

 



Serre 6.5 (About integralilty of )

 

Lifting of Reps of Quotient group  

 induces a representation from the quotient group rep.

Take the composed representation to be  

Proof: 

 

Define , recall 

Proof: : Consider the diagonalization of .

If ; if 

 

Cor. 

.( 在陪集上取值相同)

 

Thm. Correspondence: 

(This correspondence can be restricted to irreducible representation)

 



Prop. 

Proof:   

Consider the lifting.

 

Cor.  is simple  non trivial 

 

Examples.

, 

From character table of , we get character table of .

 

Still use the previous subgroups, , conduct the similar process

 

 

Similarly , 

 

Linear Characater  

A character  is linear if 

Lemma 



More precisely, , 

(Computing its inner product implies a direct proof)

 

 

Tensor product of characters  

Given 2 representations, we can get a tensor product representation via tensor product.

Cor. 

Def. 

4. Mckay Correspondence  

Directed Graph.

Given a group , fix a ,  

(Here  denote the mutiple number of edges)

Take 

 



Lemma.  provided that .  (Or saying self-dual)

对于 ，取Cartan 矩阵 。Here 

和 互相决定了对⽅。

 

, 

 

Ex. 

Lemma. 

Lemma. 

Lemma.  is connected graph.

Pf: 1. Induction.  is a summand of ,

Suppose , 

However , 

Thus, 

Let , one get 

Thus contradiction.

 

Lemma.  provided that .



Pf: If .

 

Thm. Classification.

These are called Euclidean type(Since it corresponds to 3d polygon)

 

Dynkin (Spherical Type): Finiteness

Dynkin (Euclidean Type): Tame

Dynkin (Hyperbolic Type): Wild

 

Given a connected graph , Cartan matrix . Say vertex set .

Def.

Quadratic Form ; Bilinear Form 

.

Particularly .

 

Def. Under the condition of  semi-positive determined, let radical 
.

Theorem. 

Pf: Say  if .  sincere if .

Lemma. If , then  is sincere.



If  is S.P.D., then 

Rmk. For Euclidean , .

Proof:  . Since , 

If , : 

Since  conn. , contradiction.

Thus  sincere.

Thus  S.P.D., (Since all connected)

 

In such case, define  set of roots.

Here real roots ,imaginary roots  .

 

If not , then , 

Fact. .

 

Let , . 

 

Thus not not 

Previously we get 



Only need to show : since 

Calculate all roots of 

 

Summing up: ADE Phenomenon.

This is a purely combinatoric stuff. However this phenomenon has a relation with  other 
branches.

Remark. 

 

 a binary dihedral group.

Its Mckay graph is exactly 

 

 

 

.  

Recall , , then 

Since  is the inverse image of  under the map , one can easily get: 

(Note that )

Thus using this fact  can be written down explicitly.



5. Ellipse Cubic Equation & Elliptic Curves  

Elliptic Integrals  

 

Def.(Ellipse) 

Arc length.

Recall(?) 

Thus combining with the Wallis Formula we get , where 
.

However 

Thus 



Remark. Kepler ; Euler ; Ramanujan 

 

, where the right hand side integral is called 

2nd type Elliptic Integral. (1st type can be achieved by deleting the  over the fraction 
line)

 

Cubic Equation  

Given a cubic equation over , it can be deduced into a normal form 

Cardano's trick:

Say a root , 

Let  we get 

Thus . Here , then we get the result

 

Elliptic Curves  

Consider the curve  (From previous discussion we have already noticed 
its importance), and we expect it to be defined over .

Def.(Elliptic Curves) Elliptic Curves is a projective algebra curve (in ) of genus 1 with 
a  specified point , and it is not singular.



 

Plane projective curve  is more and less projective varieties. (Here )!
Say the variety singular at a point , if .

 

Its quite hard to show the equivlance of previous 2 definitions of elliptic curves. But we 
can check for curve , it satisfies the second definitions.

 

Remark. In general , 
 

Genus of Algebraic Varieties: 

 

Singular Example. Singular case: 

 

Theorem. (Abel Group Structure on Elliptic Curves)  an abelian group structure on 
Elliptic Curve:

1. 

2. If , then inverse element 

3.  colinear, namely we define .

Proof:

, take  then 

When , through definition we immediately get 



When , namely , through taking limits we immediately get the 

result, where  is the slope of tangent .

 

Associative Law.

, verified by direct calculation.

Ossia:

Say .

We want to show  are same points.

Suppose , we say 3 lines , 

Say , , since , 

Let Vector Space , .

WLOG we let  generic. Consider 

, , and  are linear independent. (Consider its value on 
.)

Thus 

However 

Thus , as , i.e. , thus , Contradiction!

 

Remark. Theorem also holds over a general field : especially a finite field.

For example , 
, i.e. .



 

Elliptic Cryptography  

Diffre-Hellmen Key-Exchange Protocol.(DHKE)

Transfer information  from Archer to Berseker, where Archer owns a private key , 
Berseker owns a private key . Berseker decode information through .

 

Ellip. Agreement on a key: Given a elliptic curve .

Initial point  and the Elliptic Curve and the prime number  are public.  are 
resp. Archer and Berseker's private key, they send  to each other, and they can 
now own the same key .

Now Archer and Berseker safely own the key without letting others now. Through the 
same key Archer and Berseker can safely transfer information. (For example Archer sends 

, Bersecker decode it by dividing .)

Complex Toris  

Given a lattice ,  linear independent.



Theorem.(Uniformization Thm.)  correspond uniquely to a 
complex toris .

We must elaborate this a little bit more: Here the correspondence leads to a complex Lie 
group isomorphism. " "
Def. Weierstrass function.

, through analysis stuff we get  is a 

meromorphic function, and it converges absolutely and uniformly on  

" "
 

Def. Eisenstein series

, , where  is in the upper half plane, .  

when  odd. Thus  is a function on , and 

 

 converges absolutely.

Proof. Take  the minimum distance between lattice points in , take 
. Then 

And 

Thus 

The second term converges since it has the order .

 

"
Direct calculating:



Since 

Then 

"
 

Thus 

""
Then  has no negative exponent terms. Thus  
holomorphic and bounded (since periocity).

" " "
Thus  (Liouville Theorem)

 

" "
Thus there , where " "
 

Conversely , 

 

j-Invariant  

Given a non-singular elliptic curve . We define 



Say , take  into , We have the form 

, then 

 

Theorem. 

i.e.  is invariant under  (act on lattice).

Since  is invariant under , we immediately get the theorem.

 

If we quotient equivalent elliptic curve, then 

Note that , . Where  has type 

A precise construct: , 

 acts natually on 

Example  fixing  and act as rotating  : 

 

This is the modular space of elliptic curves.

 

Some Remarks  

Since , : viewed it as a rational 
slope line on the complex plane.

 



If , .

Proof: Exists a action in  onto  : , then 
immediately get the result.

 

, 

Consider , , this is 
exactly the trefoil knot.

Proof of the fact: Since knot can be embedded onto a torus , it satisfies 

On the other hand  can be fixed. Then 

, which leads to the result.

 

Remark. Given a knot . 

 

6. Geometry Mckay Correspondence  

Recall. ADE phenomenon

1. Classification of regular 3D polyhedron

2. Spericalt triangle tiling

3. 

4. Mckay Graph from Reps of BD.

5. Kleinian Singularities

6. Cluster

7. Quiver

8. Root System (Semi-simple Lie Algebra)



Finite Subgroup of  

Lemma. Any finite subgroup of  is conjugate to some .

Proof: Recall weyl's unitary trick.

 

Table of ADE groups.

##
 

Lemma.  is a (sub)ring.

Calculate  for : type .

Thus  is generated by .

Calculate  for  : type .

Thus generated by 

Thm. , denote , then , s.t. !!
 

The Raynold's operator: 

 is a surjective operator, thus only need to calculate .



For 

Thus generator . Moreover 

For ,

#

#
Thus generator 

(The 2nd line of the result of  can indeed be represented by this 3 generator, 
through computaion...)

For , the generators are 

For , the generators are

For , the generators are

 

Thm. , .  corresponds to .



Proof: Dimension Reasons (?)

 

 

Resolution of Singularities  

 For the polynomial corresponding to , it corresponds to a cone when . i.e. 
. Observing that  is a singular point. We would expect to resolve it.

Now we are going to define rigrously about the resolution of singularities.

 Singularity at .

Definition(Resolution of a singular) The resolution of a singular algebraic variety 
is a smooth variety together with a regular map(morphism) . Since  
has only one singular point , we expect 

Here isomorphism is define as usual in general constructions. 

 

Definition(Blow-up at ) Let 

Define 

i.e. 

This blowing up actually add the tangent line information at the origin.

Consider the stropboid as a vivid example.



 

Definition.(Blow up of a variety) 

Note that , it's necessary not to add all inverse images into the 
blow up since it will destroy the smooth property.

Remark. Blow-up is not necessarily a sing. resolution; Find Minimal Resolution?

 

Example. Take 

Then 

Here we want to use  to represent the result.

 

Kleinian Singularities  

, here  refer to the generating relation. 

Thm. Let  be a minimal resolution of , then , 

Example. . 

; , 

Consider the coordinate region 

Through computation we get 

Let , We get ; Similarly 

For  region. , .



 

Example  

.

Hence we reduce the case to .

 

7. Cluster Theory  

Frieze  

 

 

Definition A frieze pattern of height  consists of  row positive integer 
written as a net. s.t. Top row/Bottom row are all 1s.

Phenomenon 1. A lightingbolt (Path from Top to the Bottom) which are made up of 1 
determine a frieze pattern uniquely.

(Converse does not holds: Using (2,2,1,3))

Phenomenon 2. All frieze is periodic under glide reflection, whose fundamental domain 
(the , as shown below) is a regular triangle, thus with  non-top/bottom row 
elements. ( )

 

Call the period of the 1st non trivial row a quddity sequence.

Thm. (Conway-Coxeter)  quiddity seqqene of height  are precisely from



 

Quiver mutation  

Recall the famailiar sequence ,  has a period 5.

(Quiver) A directed graph without self-loop and 2-cycle(parallel opposite edge) is 
called a quiver.

Given a initial cluster , . i.e. putting a variable on all vertices 
of the initial cluster.

Mutation of  at 

Step1. 

Step2. , then reverse the arrow. Here the change is made in modification, instead of 
adding.

Step3. Kill all 2-cycle.

Step4. Change the point value 

Lemma. 

 

Hence its easy to be shown that for a height-2 frieze, the zigzag line (middle 2 roows) are 
made exactly by conducting mutation on  . Hence easy to verify the periodic 
property.

 

Set up. Given a initial cluster , one can get all cluster from iteratedly 
mutation, (identify them if  isomorphism )

A cluster variable is the variables(actually rational function resp. the initial variables) that 
appears in the cluster



FACTS: 1. Any cluster variable is a Laraunt Polynomial. i.e. ; 2. 

Coefficient of the polynomial  is non-negative.

 

Def. Cluster Exchange Graph

Thus the  of  is exactly a pentagon.

Thm. (Fomin-Zelevinsky)

TFAE:

;

 is mutation equivalent to a Dynkin graph, i.e. you can turn the graph into a dynkin one 
by some steps of mutations;

Any  mutated from  has no double arrow.(Parallel Arrow)

 

Type  cluster  Frieze(generalized)

At this time, the cluster variables are 

 example has been showned previously, now we compute the  case.

Associahedron, Catalan Numbers, Triangulation of gon  

Consider ways of adding (), each () only involve two parts. Say vertices to be the ways of 
adding n ()s on n+2 elements, connect a edge if the ways can be transformed by using 
associative law for 1 time, we get a graph. Call this graph a associahedron.

(The famous pentagon is the associahedron for , i.e. ) 

This problem has another name: Effective parenthesis.

Binary Tree. A tree with  leaves, any vertices has exactly 2 branches unless it 
reach the leaves.



Any tree corresponds to the way of multiplying the  variables.

Thus 

Proof: , , 

Expanding it using generalized bionomial theorem.

Probability Explaination:

Consider a random walk from 0. Each step choose +1/-1 at probability 1/2. View -1 as a 
trapped state, then 

Since 1-dimensional random walk is always recurrent, then the  should be 1.

 

See Notes.

For any elements in , we view it as a series of  pairs of parenthesis and  
variables , where each parenthesis contains 2 blocks. (For example  is 
a proper series)



We view left parenthesis "(" as "+", variables " " as "-"( ). Then we get a "+","-" 
sequence which satisfies #"+" in first  elements are no less than #"-".

Thus we get a map: 

For the inverse direction, given a sequence of "+" and "-", we first write the  and 
left parenthesis by view "+" as "(", "-" as " ", and add  at the end. Then we add right 
parenthesis so that each pair of parenthesis only contain 2 blocks. This can be completed 
uniquely since we can add right parenthesis from the right of the sequence. The adding 
method is also unique since each pair must contain 2 blocks. 

These two operations are indeed inverse. Thus we get the result.

 

 

Definition. A triangulation of gon is a collection of diagnols that 
divide  into triangles.

Similar to the associahedron, for triangulation we get a exchange graph where vertices are 
triangulation, edges are flip. We get a Graph 

 

Theorem. 

Proof: For the -gon, fix an edge, and view the other  edges as  variables, 
the diagnols can be viewed as the ways of conducting multiplications. Thus it has a 
correspondonce with . Thus the theorem is trivial.

Taking midpoints of edges and diagnols, we immediately get an binary tree which is 
exactly the binary tree in the previous correspondonce!

 

Theorem.  Quddity of frieze of height , it arises from a triangular , where  is 
the angle of 

 



Lemma. 

Theorem. Exists a bijection: , such that 
exchange relation becomes Ptolemy relation.

Moreover, variable on the diagonol  has the form 

Remark. For the meaning of , Since the 1s in the frieze are actually edges of the polyton. 
Thus one can replace  with s temporarily.

Proof: Given   whereas the diagonals have a common point. We claim that  
clusters forall diagonals such that Ptolemy relations are satisfied.

It suffices to discribe how quiver corresponds to the diagonals. However this is obvious 
since mutate at a point (or to say at a diagonal) is equivlant to conduct a fliping 
operation. The variable changes are exactly satisfying the Ptolemy relation. (Through a 
local check)

Thus all clusters mutated from  are exactly triangulation of the polygon.

 

Thus the rest is to say given a set of edge variable and the initial variables. This is an 
elementary result however. One can easily deduced it by induction.

 

Corollary. This bijection induces .

Corollary.  general freize comes from cluster algebra of type  (in the sense that 

, here  denotes the diagonal 

numebr of )

Corollary.(Conway-Coexter)  bijection between  and the integral frieze of height 
.



Proof: Given a 

Lemma. . Checking that the complement mathcing satisfies the desired case.

Lemma.  satisfies the Ptolemy relation.

Lemma.  quddity of an integral frieze, .

Take the largest , consider the edges , then 
. If the value equals 2. Then 

, suppose no 1 exists, then all , contradiction.

Lemma.(Buliding) If  on the quddity, i.e. , then exists a quddity by deleting , 
then exists a quddity . (The idea is deleting a corner of 
the polygon )

Lemma.(Gluing) We can insert a  in the quddity, the idea is adding the corner on the 
polygon.

Lemma. If quiddity is  for some , then the building is 

 

By lemmas above, the  we constructed indeed induces a frieze.

 

Now we prove the previous theorem. First we recall the description of Fomin-Zelevinsky 
theorem.

Thm. (Fomin-Zelevinsky)

TFAE:

;

 is mutation equivalent to a Dynkin graph, i.e. you can turn the graph into a dynkin one 
by some steps of mutations;



Any  mutated from  has no double arrow.(Parallel Arrow)

 

Proof: If a parallel arrow exists, through elementary check one can get it's impoosible to 
get the  back again.

If a graph is not Dynkin, there must exists a Euclidean graph as subgraph. Through direct 
check one can get  will induce a double arrow.

(One should also check  leads to a finite .)

 

8. Lines in surfaces  

A plane section of a conic is called a quadratic curve. It has a genereal form 
, or .

Quadratic Surfaces  

For quadratic surfaces in , it is always projectivly equivalent to 

It is doubly ruled:  or 

For the converse, say ,  lie on the quadratic surface 
if and only if , hence the result.

 

Cubic Surface  

Fermat Cubic  

For the lines, wlog 

By solving this we get , or cyclic the .



By computing we get each line intersect with 10 lines, have no intersection with 16 lines.

We define : such that vertices are the lines, link a edge if they intersect.

Lem. , where  is the Weyl Group.

Clebsch Surface  

A surface in 

Consider plane in the 3-manifold , and intersect it with the plane 

 be the planes in the 3-manifold,  be the 5th-unit root. in which 15 
, 12  .

 

Let  be all smooth cubic in 

Then  is a 2-cover of .

 

Lemma.  Cubic Surface  blow-up of  at 6 points.
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