Algebraic Number Theory

0. Plan

1. Algebraic integers
2. Dedekind domain
3. Finiteness Thms

4. Valuation Theory

1. Introduction

Examples.
x = 2ab

Solve eq. 2 + y? = 2%. One can easily deduced that { y = a? — b (with some additional
z=a?+ b

conditions)

Solve y?> = z° — 2,23 = (y + v/ -2)(y — vV—2).

Consider Z[+/—2]. This ring is a UFD; its units are +1; 1/ —2 is irreducible;
ged(y+vV—-2,y—+v—-2) = 1.

(z|y:|: V-2 = 2|2V2 = V2|2 = V-2ly = 2y
— > =2—-2=2 mod 8
2’ =(y+vV-2)y—v-2) = y+v-2=

Thus (g 4 bv/~2)% = a(a® — 6b%) + b(3a® — 2b*)vV—2 = b(3a® — 2b%) =1
— (a,b) = (+1,1);(3,£5)

.Contradiction)

This leads to the first "fake" proof of Fermat's Last Thm. (Error occurs that
mathematicians assume that Z[/—p] is always an UFD which is obviously not true.)



Thus the main aspects we concern is:

1. Z[(,) UFD?
2. What is Z[(,]*

3. Iwasawa Theory.
General Statement:
Intregral ring of Q[v/—d] in Z is O.
Thml. (Factorization of Ideals)

Given an ideal I C Oy,one can decomposite I = [] p$ in a uniquely (Primary
decomposition)

Thm?2. (Finiteness of class number)
Cly = {fractional ideals}/{principle ideals}, which is a F.G. Abelian Group.
This evaluate how far a dedekind domain is from the principal ideal domain.
Thm3. (Dirichlet's Unit Theorem.)
» = Wy x Vi, where Wy, is finite abelian group, generated by (j, V} is free abelian

group Z"*"2~1 where 7}, 75 are numbers of real embedding and non-real embedding,
resp.

Galois Theory.
L/K afinite extension. Gal(L/K) = {¢ : L — L,iso|¢|x = id. }

Gal(L/K) = Z/2Z.



Thm4. Middle field of L /K M.,it leads to subgroup of Gal(L/K) Gal(L/M). Conversly
a subgroup H leads to L.

Thus we need to study Gal(L/Q).

Issue. Rep(Galg) is far too complicated, we study Galg, instead.

(Here Galg = Gal(Q/Q), Galg, = Gal(Q,/Q)

Class Field Theory.

We find that Gal(L/Q,) = Q, /Nm(L*)

Here Nm : L — K,z € L, ¢, : y— xy,take Nm(x) = det.

This is a local case.

For global cases Ig = HU Q. , here v are all valuations (absolute, p—adic)
= {(zy)|zy € Q) ,x, = O for all but finite many v}

Thm. Gal(L/Q)® = Iy/Nm(Iy)

Langlands Conjecture.

2. Algebraic integers

Given a ring extension A C B. Say x € B integral over A if exists monic polynomial with
coefficient in A such that it is the root of this polynomial.

Say B integral over A if Vo € B is integral over A.



Prop. A C B, TFAE:
1.z integral; 2. A[z] f.g. A—module; 3.  contained in a f.g. A—module.

Cor. Integral closure of A in B form a subring of A containing A. (z + y, zy € Az, y),
while the latter module is f.g. A—module)

If the integral closure of a ring is itself, then we say the ring to be integrally closed.(%:4])

If a ring A is an integral domain, then it is integrally closed if it is integrally closed in its
fraction field.

Def. K /Q finite extension, then Oy, is the integral closure of Z in K.

Trace and Norm.

Given a finite extension of fields L/ K,Vx € L. ¢, : L — L,y +— zy

Define the trace of x is t7(¢, ), norm is det ¢, where ¢, viewed as a K —linear
transformation. Obv that trace and norm belongs to K.

Productivity: N(ab) = N(a)N(b)

E.g.In Q[2 + v/3]/Q, Nm(2 + v/—3) = 7. (Which has a direct relation with the
complex cases.)

Prop. L/ K finite extensions of fields of char 0. n = [L : K|, 7 : K — (2 is a fixed
embedding into its algebraic closure.

Then 3 n distinct embedding o1, - -, 0, : L — 0, s.t. 0;|x = 7; and all of the
embeddings 01, - - -, 0, are linear independent.



n

Tri/k(z) = Z oi(x)

1=1

Nmp k() = f[ oi(z)

Pf:Fact Trp x(z) = [L : K(2)|Tr k() (x); Nmp/g(z) = Nmg(z)x(z) FE@)

Say f(T) =T™ + - -- € K[T] is the minimal polynomial of z. Then

Trg@/k(x) = —a; = ) {rootsof f} = > o;(x), similarly we get similar results for

the norms.

Prop. Consider L x L — K : (z,y) — Trr, x(zy) which leads to a quad. form, it is
non-degenerate.

Cor.ay, - -,a, aren = [L : K| elements of L. Then (ay, - - -, a,) is a K—basis of
L <— det (TTL/K(aiaj)) 75 0

K" —— L — K"
Hint. Consider: (96@) — inai
z  — (Tr(za;))

Discriminents

Discriminents. Consider K /Q,n = [K : Q], a1, -, a, € K, define the
discriminant det (Tr(ozioz j) .

Lem.(1) 01, - -, 0, are embeddings of K into Q, then
Disc(a, -+, ay) = det (ai(aj))2



(2) (betay,---,Bn) = (a1, -+, a,)C,where C € M,,(K), then
Disc(B1,- -+, Brn) = Disc(ay, -, ay)(det C)?

E.g. f(T) € Q[T] the minimal polynomial of @ € K, then
0 deg f <n

n—1\ __
) = (1) 2N o (f(a) deg f=n

Disc(l,a, -+,

Prop. Ok is a free abelian group of rank n.
Pf. (a1, -, o) the basis of K/Q
Given M = ®&Zo; C Ok

Consider the dual basis o} such that T'r g /g (aj crj) = d;5, thus we get the dual span
M* = @;Za; = {z € K|Trgg(zy) € Z|Vy € M}, thus Ox C M*

Moreover |M* /M| = |Disc(as, - - -, a,,)| finite, thus O g must be a rank n free abelian
group.

Definition. A basis o, - - -, a, of K/Q is called an integral basis if it is a basis of
Ok/Z

(From the prop. previously shown, it is a reasonable definition)

Definition. A = Disc(integral basis) € Z is invariant under changes of the
integral basis. It is called the discriminent of K

Invariant property comes from the following fact:

Since (81, -+, Bn) = (a1, n)C5 (@1, an) = (Br, -+, Bn) D

Thus Disc(8) = Disc(a)(det C)?; Disc(a) = Disc(B)(det D)?, since integrality,
Disc(a) = Disc(B)



Prop. a € Ok s.t. K = Q(a), f(T) € Z[T] being its minimum polynomial. Assume

p*Disc(l,a,- -+, a"1)

o

If 3is.t. f(T + 1) is a p—Eisenstein polynomial, then O = Z[q]

Lem. By, - -+, Bn € Ok s.t. B; a basis of K /Q, then 3, integral basis <= Vp?|Disc(8;),
Azrqy € {0,---,p — 1} s.t. Inotall 0 coefficients z; s.t. > z;8; € pOk-.

Pf: Take o; a integral basis, assume f3; is not a integral basis, (8;) = (a;)C, then
| det C| # 1. Take p | | det C|, consider C = C' mod p,dz; € F,,Cz =0

Then we get Y x;8; € pOy,.

Conversely if > z;8; € pOk, then p| det C, thus det C' # 1.

Now back to the prop.

n—1

1 .
Forz = — Z z;a', we need to show z ¢ O. Take j = min{i|z; # 0},
i—0
K/@(a]) n—1 —
Nxjele) = — o Nxjo(Xisj 2:0)

Nk (aj) —1)"a, J
Since /ZSL = ( 12” ) , p||an, we only need to ShOWp)(NK/Q(Z?:_jl

z;at )

However Ng/g(3 1= zia'™7) = [[j_y(z; + z; 104(a)* ™7 - - -), from calculating we get

the result, thus Nx q(z) & Z, hence the result.

E.g. Cyclotomic Extension.

Consider p?|Disc(1, - - -, Cg:_p), @, (z + 1) Eisesnstein, thus O ¢ .] = Z[(pn]



1
Prop. Assume K N L = Q,d = gcd(Ak,Ar), then Ok, C EOKOL

x;.
Pf. Take (o), (B;) a integral basis of O, Op, letz € Ok, thenz =, . ;i
o

We need to show r|d,i.e.7|Ag

3. Ideal Class Group

Def. (Fractional ideal) A fractional ideal is a sub O —mod of K, say I, s.t.
dd € Ok, dI C Ok

Prop. Define I ! = {z € K|zI C Oy}, then I ! is also a fractional ideal.

Given a fractional ideal I, exists integral ideal s.t. I = I 1, L

Def. (Ideal Class Group) Clx = { fractional ideals}/{principle ones}

Thus Cl g measures how far a Dedekind domain is from a PID.

Norm

Def. I C Ok, define N(I) = #(Ox/I)

Prop. I = (z), N(I) = Ngg(z); N(IJ) = N(I)N(J);
Vn, Jfinite many I, N(I) = n



Proof of the Main Theorem

Theorem. (Minkowski Bound)

K,n = [K : Q], ro = pairs of complex inclusion.(o, &) , 7; = numbers of real inclusion.
Thus n = r1 + 2rs.

V ideal class contains an integral ideal a, s.t. N(a) < (4/7)5 - n!/n" - /| Ak

Lem. Given a lattice A C R"”, X C R"” centrally symmetric convex connected space,
u(X) > 27u(R"/A)
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