Algebraic Number Theory

0. Plan

- 1. Algebraic integers
- 2. Dedekind domain
- 3. Finiteness Thms
- 4. Valuation Theory

1. Introduction

Examples.

Solve eq. $x^2+y^2=z^2$. One can easily deduced that $\begin{cases} x=2ab \\ y=a^2-b^2 \end{cases}$ (with some additional $z=a^2+b^2$ conditions)

Solve
$$y^2 = x^3 - 2$$
, $x^3 = (y + \sqrt{-2})(y - \sqrt{-2})$.

Consider $\mathbb{Z}[\sqrt{-2}]$. This ring is a UFD; its units are ± 1 ; $\sqrt{-2}$ is irreducible; $gcd(y+\sqrt{-2},y-\sqrt{-2})=1$.

$$(z|y\pm\sqrt{-2}\implies z|2\sqrt{2}\implies\sqrt{-2}|z\implies\sqrt{-2}|y\implies 2|y\implies 2|y$$
 .Contradiction) $\implies y^2=x^3-2\equiv 2\mod 8$

$$x^3=(y+\sqrt{-2})(y-\sqrt{-2})\implies y+\sqrt{-2}=$$
 Thus $(a+b\sqrt{-2})^3=a(a^2-6b^2)+b(3a^2-2b^2)\sqrt{-2}\implies b(3a^2-2b^2)=1$ $\implies (a,b)=(\pm 1,1);(3,\pm 5)$

This leads to the first "fake" proof of Fermat's Last Thm. (Error occurs that mathematicians assume that $\mathbb{Z}[\sqrt{-p}]$ is always an UFD which is obviously not true.)

Thus the main aspects we concern is:

- 1. $\mathbb{Z}[\zeta_p]$ UFD?
- 2. What is $\mathbb{Z}[\zeta_p]^{\times}$
- 3. Iwasawa Theory.

General Statement:

Intregral ring of $\mathbb{Q}[\sqrt{-d}]$ in \mathbb{Z} is \mathcal{O}_k .

Thm1. (Factorization of Ideals)

Given an ideal $I\subseteq \mathcal{O}_k$,one can decomposite $I=\prod p_i^{lpha}$ in a uniquely (Primary decomposition)

Thm2. (Finiteness of class number)

 $Cl_k = \{fractional\ ideals\}/\{principle\ ideals\}$, which is a F.G. Abelian Group.

This evaluate how far a dedekind domain is from the principal ideal domain.

Thm3. (Dirichlet's Unit Theorem.)

 $\mathcal{O}_k^{\times}=W_k\times V_k$, where W_k is finite abelian group, generated by ζ_k , V_k is free abelian group $\mathbb{Z}^{r_1+r_2-1}$, where r_1,r_2 are numbers of real embedding and non-real embedding, resp.

Galois Theory.

L/K a finite extension. $Gal(L/K) = \{\phi: L
ightarrow L, iso|\phi|_K = id. \}$

$$Gal(L/K) = \mathbb{Z}/2\mathbb{Z}.$$

Thm4. Middle field of L/K M, it leads to subgroup of Gal(L/K) Gal(L/M). Conversly a subgroup H leads to L^H .

Thus we need to study $Gal(L/\mathbb{Q})$.

Issue. $Rep(Gal_{\mathbb{Q}})$ is far too complicated, we study $Gal_{\mathbb{Q}_p}$ instead.

(Here
$$Gal_{\mathbb{Q}}=Gal(ar{\mathbb{Q}}/\mathbb{Q}), Gal_{\mathbb{Q}_p}=Gal(\mathbb{Q}_p/\mathbb{Q})$$

Class Field Theory.

We find that $Gal(L/\mathbb{Q}_p)\cong \mathbb{Q}_p^{\times}/Nm(L^{\times})$

Here $Nm:L \to K, x \in L, \phi_x: y \mapsto xy, take \ Nm(x) = \det$.

This is a local case.

For global cases $I_{\mathbb{Q}} = \prod_v \mathbb{Q}_v^{ imes}$, here v are all valuations (absolute, $p ext{-adic}$)

$$=\{(x_v)|x_v\in \mathbb{Q}_v^{ imes}, x_v=\mathcal{O}_v^{ imes} for \ all \ but \ finite \ many \ v\}$$

Thm.
$$Gal(L/\mathbb{Q})^{ab} \cong I_\mathbb{Q}/Nm(I_L)$$

Langlands Conjecture.

2. Algebraic integers

Given a ring extension $A \subseteq B$. Say $x \in B$ integral over A if exists monic polynomial with coefficient in A such that it is the root of this polynomial.

Say B integral over A if $\forall x \in B$ is integral over A.

Prop. $A \subseteq B$, TFAE:

1.x integral; 2.A[x] f.g.A-module; 3. x contained in a f.g. A-module.

Cor. Integral closure of A in B form a subring of A containing A. $(x+y,xy\in A[x,y]$, while the latter module is f.g. A-module)

If the integral closure of a ring is itself, then we say the ring to be integrally closed.(整闭)

If a ring A is an integral domain, then it is integrally closed if it is integrally closed in its fraction field.

Def. K/\mathbb{Q} finite extension, then \mathcal{O}_k is the integral closure of \mathbb{Z} in K.

Trace and Norm.

Given a finite extension of fields $L/K, \forall x \in L. \ \phi_x : L \to L, y \mapsto xy$

Define the trace of x is $tr(\phi_x)$, norm is $\det \phi_x$, where ϕ_x viewed as a K-linear transformation. Obv that trace and norm belongs to K.

Productivity: N(ab) = N(a)N(b)

E.g. In $\mathbb{Q}[2+\sqrt{3}]/\mathbb{Q}$, $Nm(2+\sqrt{-3})=7$. (Which has a direct relation with the complex cases.)

Prop. L/K finite extensions of fields of char 0. n=[L:K], $\tau:K\to\Omega$ is a fixed embedding into its algebraic closure.

Then \exists n distinct embedding $\sigma_1,\cdots,\sigma_n:L\to\Omega$, s.t. $\sigma_i|_K=\tau$; and all of the embeddings σ_1,\cdots,σ_n are linear independent.

$$Tr_{L/K}(x) = \sum_{i=1}^n \sigma_i(x)$$

$$Nm_{L/K}(x) = \prod_{i=1}^n \sigma_i(x)$$

Pf: Fact
$$Tr_{L/K}(x) = [L:K(x)]Tr_{K(x)/K}(x); Nm_{L/K}(x) = Nm_{K(x)/K}(x)^{[L:K(x)]}$$

Say $f(T)=T^n+\cdots\in K[T]$ is the minimal polynomial of x. Then $Tr_{K(x)/K}(x)=-a_1=\sum\{roots\ of\ f\}=\sum\sigma_i(x)$, similarly we get similar results for the norms.

Prop. Consider $L imes L o K: (x,y) \mapsto Tr_{L/K}(xy)$ which leads to a quad. form, it is non-degenerate.

Cor. $\alpha_1, \dots, \alpha_n$ are n = [L:K] elements of L. Then $(\alpha_1, \dots, \alpha_n)$ is a K-basis of $L \iff \det \left(Tr_{L/K}(\alpha_i \alpha_j) \right) \neq 0$

$$K^n \longrightarrow L \longrightarrow K^n$$

Hint. Consider: $(x_i) \longrightarrow \sum x_i \alpha_i$

$$x \longrightarrow ig(Tr(xlpha_i) ig)$$

Discriminents

Discriminents. Consider K/\mathbb{Q} , $n=[K:\mathbb{Q}]$, $\alpha_1,\cdots,\alpha_n\in K$, define the discriminant $\det \big(Tr(\alpha_i\alpha_j)\big)$.

Lem.(1) $\sigma_1, \dots, \sigma_n$ are embeddings of K into \bar{Q} , then $Disc(\alpha_1, \dots, \alpha_n) = \det \left(\sigma_i(\alpha_j)\right)^2$

(2)
$$(beta_1,\cdots,\beta_n)=(\alpha_1,\cdots,\alpha_n)C$$
, where $C\in M_{n\times n}(K)$, then $Disc(\beta_1,\cdots,\beta_n)=Disc(\alpha_1,\cdots,\alpha_n)(\det C)^2$

E.g.
$$f(T) \in \mathbb{Q}[T]$$
 the minimal polynomial of $\alpha \in K$, then $Disc(1, \alpha, \cdots, \alpha^{n-1}) = egin{cases} 0 & \deg f < n \ (-1)^{n(n-1)/2} N_{K/\mathbb{Q}}(f(\alpha)) & \deg f = n \end{cases}$

Prop. \mathcal{O}_K is a free abelian group of rank n.

Pf.
$$(\alpha_1, \cdots, \alpha_n)$$
 the basis of K/\mathbb{Q}

Given
$$M=\oplus \mathbb{Z} lpha_i\subseteq \mathcal{O}_K$$

Consider the dual basis $lpha_i^*$ such that $Tr_{K/\mathbb{Q}}(lpha_i^*lpha_j)=\delta_{ij}$, thus we get the dual span $M^*=\oplus_i\mathbb{Z}lpha_i^*=\{x\in K|Tr_{K/\mathbb{Q}}(xy)\in\mathbb{Z}|\forall y\in M\}$, thus $\mathcal{O}_K\subseteq M^*$

Moreover $|M^*/M|=|Disc(\alpha_1,\cdots,\alpha_n)|$ finite, thus \mathcal{O}_K must be a rank n free abelian group.

Definition. A basis α_1,\cdots,α_n of K/\mathbb{Q} is called an integral basis if it is a basis of O_K/\mathbb{Z}

(From the prop. previously shown, it is a reasonable definition)

Definition. $\Delta_K=Disc(integral\ basis)\in\mathbb{Z}$ is invariant under changes of the integral basis. It is called the discriminent of K

Invariant property comes from the following fact:

Since
$$(\beta_1, \dots, \beta_n) = (\alpha_1, \dots, \alpha_n)C; (\alpha_1, \dots, \alpha_n) = (\beta_1, \dots, \beta_n)D$$

Thus $Disc(\beta) = Disc(\alpha)(\det C)^2$; $Disc(\alpha) = Disc(\beta)(\det D)^2$, since integrality, $Disc(\alpha) = Disc(\beta)$

Prop. $\alpha\in\mathcal{O}_K$ s.t. $K=\mathbb{Q}(\alpha)$, $f(T)\in\mathbb{Z}[T]$ being its minimum polynomial. Assume $p^2|Disc(1,\alpha,\cdots,\alpha^{n-1})_\circ$

If $\exists is.\ t.\ f(T+i)$ is a p-Eisenstein polynomial, then $\mathcal{O}_K=\mathbb{Z}[lpha]$

Lem. $\beta_1, \cdots, \beta_n \in \mathcal{O}_K$ s.t. β_i a basis of K/\mathbb{Q} , then β_i integral basis $\iff \forall p^2 | Disc(\beta_i)$, $ot \exists x_1 \in \{0, \cdots, p-1\}$ s.t. \exists notall 0 coefficients x_i s.t. $\sum x_i \beta_i \in p\mathcal{O}_K$.

Pf: Take α_i a integral basis, assume β_i is not a integral basis, $(\beta_i) = (\alpha_i)C$, then $|\det C| \neq 1$. Take $p \mid |\det C|$, consider $\bar{C} = C \mod p$, $\exists \bar{x_i} \in \mathbb{F}_p$, $\bar{C}\bar{x} = 0$

Then we get $\sum x_i \beta_i \in p\mathcal{O}_k$.

Conversely if $\sum x_i \beta_i \in p\mathcal{O}_K$, then $p|\det C$, thus $\det C \neq 1$.

Now back to the prop.

For
$$x=rac{1}{p}\sum_{i=0}^{n-1}x_ilpha^i$$
 , we need to show $x
ot\in\mathcal{O}_K$. Take $j=\min\{i|x_i
eq 0\}$, $N_{K/\mathbb{Q}}(x)=rac{N_{K/\mathbb{Q}}(lpha^j)}{p^n}N_{K/\mathbb{Q}}(\sum_{i=j}^{n-1}x_ilpha^{i-j})$

Since
$$rac{N_{K/\mathbb{Q}}(lpha^j)}{p^n}=rac{((-1)^na_n)^j}{p^n}$$
, $p||a_n$, we only need to show $p
mid N_{K/\mathbb{Q}}(\sum_{i=j}^{n-1}x_ilpha^{i-j})$

However $N_{K/\mathbb{Q}}(\sum_{i=j}^{n-1}x_i\alpha^{i-j})=\prod_{k=1}^n(x_j+x_{j-1}\sigma_k(\alpha)^{i-j}\cdots)$, from calculating we get the result, thus $N_{K/\mathbb{Q}}(x)\not\in\mathbb{Z}$, hence the result.

E.g. Cyclotomic Extension.

Consider $p^2|Disc(1,\cdots,\zeta_{p^n}^{p^n-p})$, $\Phi_{p^n}(x+1)$ Eisesnstein, thus $\mathcal{O}_{K[\zeta_{p^n}]}=\mathbb{Z}[\zeta_{p^n}]$

Prop. Assume
$$K\cap L=\mathbb{Q}, d=\gcd(\Delta_K,\Delta_L)$$
, then $\mathcal{O}_{KL}\subset rac{1}{d}\mathcal{O}_K\mathcal{O}_L$

Pf. Take
$$(\alpha_i), (\beta_i)$$
 a integral basis of $\mathcal{O}_K, \mathcal{O}_L$, let $x \in \mathcal{O}_{KL}$, then $x = \sum_{i,j} \frac{x_{ij}}{r} \alpha_i \beta_j$

We need to show r|d, i.e. $r|\Delta_K$

3. Ideal Class Group

Def. (Fractional ideal) A fractional ideal is a sub \mathcal{O}_K —mod of K, say I, s.t. $\exists d \in \mathcal{O}_K, dI \subseteq \mathcal{O}_K$

Prop. Define $I^{-1}=\{x\in K|xI\subseteq \mathcal{O}_k\}$, then I^{-1} is also a fractional ideal.

Given a fractional ideal I, exists integral ideal s.t. $I = I_1 I_2^{-1}$.

Def. (Ideal Class Group) $Cl_K = \{fractional\ ideals\}/\{principle\ ones\}$

Thus Cl_K measures how far a Dedekind domain is from a PID.

Norm

Def.
$$I\subseteq \mathcal{O}_K$$
 , define $N(I)=\#(\mathcal{O}_{\mathcal{K}}/I)$

Prop.
$$I=(x), N(I)=N_{K/\mathbb{Q}}(x); N(IJ)=N(I)N(J); \ orall n, \ \exists finite \ many \ I, N(I)=n$$

Proof of the Main Theorem

Theorem. (Minkowski Bound)

 $K,n=[K:\mathbb{Q}]$, $r_2=$ pairs of complex inclusion. $(\sigma,ar{\sigma})$, $r_1=$ numbers of real inclusion. Thus $n=r_1+2r_2$.

orall ideal class contains an integral ideal \mathfrak{a} , s.t. $N(\mathfrak{a}) \leq (4/\pi)_2^r \cdot n!/n^n \cdot \sqrt{|\Delta_K|}$.

Lem. Given a lattice $\Lambda\subseteq\mathbb{R}^n$, $X\subseteq\mathbb{R}^n$ centrally symmetric convex connected space, $\mu(X)>2^n\mu(\mathbb{R}^n/\Lambda)$