
Algebraic Number Theory  
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3. Finiteness Thms

4. Valuation Theory

1. Introduction  

Examples. 

Solve eq. . One can easily deduced that  (with some additional 

conditions)

Solve , .

Consider . This ring is a UFD; its units are ;  is irreducible; 
. 

( .Contradiction)

Thus 

This leads to the first "fake" proof of Fermat's Last Thm. (Error occurs that 
mathematicians assume that  is always an UFD which is obviously not true.)



 

Thus the main aspects we concern is:

1.  UFD?

2. What is 

3. Iwasawa Theory.

General Statement:

Intregral ring of  in  is .

Thm1. (Factorization of Ideals)

Given an ideal ,one can decomposite  in a uniquely (Primary 
decomposition)

Thm2. (Finiteness of class number)

, which is a F.G. Abelian Group.

This evaluate how far a dedekind domain is from the principal ideal domain.

Thm3. (Dirichlet's Unit Theorem.)

, where  is finite abelian group, generated by ,  is free abelian 
group , where  are numbers of real embedding and non-real embedding, 
resp.

 

Galois Theory.

 a finite extension. 

.



Thm4. Middle field of  ,it leads to subgroup of  . Conversly  
a subgroup  leads to .

Thus we need to study .

 

Issue.  is far too complicated, we study  instead.

(Here 

Class Field Theory.

We find that 

Here .

This is a local case.

For global cases , here  are all valuations (absolute, adic)

Thm. 

 

Langlands Conjecture.

 

2. Algebraic integers  

Given a ring extension . Say  integral over  if exists monic polynomial with 
coefficient in  such that it is the root of this polynomial.

Say  integral over  if  is integral over .



Prop. , TFAE:

 integral;  f.g. module; 3.  contained in a f.g. module.

Cor. Integral closure of  in  form a subring of  containing . ( , 
while the latter module is f.g. module)

 

If the integral closure of a ring is itself, then we say the ring to be integrally closed.(整闭)

If a ring  is an integral domain, then it is integrally closed if it is integrally closed in its 
fraction field.

Def.  finite extension, then  is the integral closure of  in .

 

Trace and Norm.  

Given a finite extension of fields , 

Define the trace of  is , norm is , where  viewed as a linear 
transformation. Obv that trace and norm belongs to .

Productivity: 

E.g. In , . (Which has a direct relation with the 
complex cases.) 

 

Prop.  finite extensions of fields of char 0. ,  is a fixed 
embedding into its algebraic closure.

Then  distinct embedding , s.t. ; and all of the 
embeddings  are linear independent.



 

Pf: Fact ; 

Say  is the minimal polynomial of . Then 
, similarly we get similar results for 

the norms.

 

Prop. Consider  which leads to a quad. form, it is 
non-degenerate.

Cor.  are  elements of . Then  is a basis of 
 

Hint. Consider: 

Discriminents  

Discriminents. Consider , , , define the 
discriminant .

Lem.(1)  are embeddings of  into , then 



(2) , where , then 

 

E.g.  the minimal polynomial of , then 

 

Prop.  is a free abelian group of rank .

Pf.  the basis of 

Given 

Consider the dual basis  such that , thus we get the dual span 
, thus 

Moreover  finite, thus  must be a rank  free abelian 
group.

Definition. A basis  of  is called an integral basis if it is a basis of 

(From the prop. previously shown, it is a reasonable definition)

Definition.  is invariant under changes of the 
integral basis. It is called the discriminent of 

Invariant property comes from the following fact:

Since 

Thus , since integrality, 

 



Prop.  s.t. ,  being its minimum polynomial. Assume 
。

If  is a Eisenstein polynomial, then 

Lem.  s.t.  a basis of , then  integral basis  , 
 s.t.  notall 0 coefficients  s.t. .

Pf: Take  a integral basis, assume  is not a integral basis, , then 
. Take , consider , 

Then we get .

Conversely if , then , thus .

 

Now back to the prop.

For , we need to show . Take , 

Since , , we only need to show 

However , from calculating we get 
the result, thus , hence the result.

 

E.g. Cyclotomic Extension.

Consider ,  Eisesnstein, thus 

 



Prop. Assume , , then 

Pf. Take  a integral basis of ,  let , then 

We need to show , i.e. 

 

 

 

3. Ideal Class Group  

Def. (Fractional ideal) A fractional ideal is a sub mod of , say , s.t. 

Prop. Define , then  is also a fractional ideal.

Given a fractional ideal , exists integral ideal s.t. .

 

Def. (Ideal Class Group) 

Thus  measures how far a Dedekind domain is from a PID.

Norm  

Def. , define 

Prop. ; ; 

 



Proof of the Main Theorem  

Theorem. (Minkowski Bound)

,  pairs of complex inclusion.  ,  numbers of real inclusion. 
Thus .

 ideal class contains an integral ideal , s.t. .

Lem. Given a lattice ,  centrally symmetric convex connected space, 


	Algebraic Number Theory
	0. Plan
	1. Introduction
	2. Algebraic integers
	Trace and Norm.
	Discriminents

	3. Ideal Class Group
	Norm
	Proof of the Main Theorem



