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Abstract. This is the outline of the presentation in Prof. Dan Isaksen’s weekly online
meeting. This presentation is intended to show that localized algebraic K-theory satisfies
some certain descent property such as Galois and some general case. The main reference is
[CMNN17CMNN17].
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1 Descent for algebraic K-theory

1.1 Historical remarks

A long-standing problem for algebraic K-theory is that we’d like to examine its descent
property. One of probably the most ancient result of this type is Mayer-Vietoris sequence for
Milnor square.
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Theorem 1.1 (Mayer-Vietoris). Given a Milnor square,i.e.

R
f

//

��

S

��

R/I
f̄

// S/I

such that I is an ideal of R and I is mapped isomorphically into S. We have the following long
exact sequence:

· · ·Kn+1(S/I)→ Kn(R)→ Kn(S)⊕Kn(R/I)→ Kn(S/I)→ · · ·

Remark. This basically comes from Milnor patching, i.e. we have cartesian square

Proj(R) //

��

Proj(S)

��

Proj(R/I) // Proj(S/I)

On the other hand, we have topologies for schemes and we naturally wonder how algebraic
K-theory behaves under these topologies. The main and classical result is that algebraic K-
theory do satisfies Nisnevich descent.[TT90TT90, Section 10]

A natural hope is that algebraic K-theory furthermore satisfies étale descent. This is
strongly related with Lichtenbaum-Quillen conjecture which compares algebraic K-theory and
étale cohomology.

These type of results basically due to work of Thomason and Voevodsky-Rost:

Definition 1.2. Define modp K-theory as K(R;Z/pZ) ∼= K(R) ⊗ S/p. Consider the v1-self
map β : Σ2p−2S/p→ S/p, we define the periodic algebraic K-theory as the telescope of β, i.e.

K(R,Z/pZ)[β−1] ∼= K(R)⊗ S/p[β−1] ∼= LT (1)K(R)⊗ S/p

(The last equality comes from LT (1) is smashing)

Theorem 1.3 ([TT90TT90, Theorem 11.5]). The periodic K-theory LT (1)K satisfies étale descent.
Moreover, under suitable conditions on scheme X, LT (1)K(X) ' Két(X).

Remark. In fact, this reduce Lichtenbaum-Quillen to the upper boundedness of S/p⊗ fib(K →
L1K), which is what we refer to by saying Lichtenbaum-Quillen property in modern text.

The following work given by Voevodsky-Rost establish a precise isomorphism between
Milnor-K theory and étale cohomology.

Theorem 1.4 ([Voe11Voe11]). Suppose k is a field of characteristic zero which contains a primitive
l-th root of unity, then

KM
n (k)/l→ Hn

ét(k, µ
⊗n
l )

are isomorphisms for all n.
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We conclude this subsection by stating the (probably) newest result on étale descent for
K-theory which is actually a future work of this paper.

Theorem 1.5 ([CMNN21CMNN21]). Let X be a qcqs spectral algebraic space, then the natural map

Két(X)→ LK(1)K(X)×LK(1)TC(X) TC(X)

is an isomorphism on homotopy in degrees ≥ −1.

1.2 Galois descent

We now turn to the main topic of this presentation. Now that we’ve already known al-
gebraic K-theory do satisfies Nisnevich descent, it suffices to only check descent property for
Galois extensions (by [LurDAG11LurDAG11, Corollary 4.24]: Nisnevich+Galois=Étale, just as classical
commutative algebra and scheme theory).

The main result we want to show in this presentation is that: under certain mild conditions,
localized K-theory do satisfy Galois descent, hence étale descent (since Bousfield localization
preserves pushouts, hence preserve Nisnevich descent property).

Theorem 1.6 (Galois descent). Let A→ B be a G-Galois extension of E∞-ring spectra with G

finite. Suppose that the image of the transfer map K0(B)⊗Q→ K0(A)⊗Q contains the unit,
then both morphisms

Lf
nK(A)→ Lf

n(K(B)hG)→ (Lf
nK(B))hG

are equivalences.

We briefly outline the proof method, which is almost same as the method Thomason used
in his proof on étale descent property for L1K. The main idea is that we consider the ⊗-ideal
I consists of M such that

M →M ⊗ [B] ⇒ M ⊗ [B]⊗ [B] · · ·

is indeed a limit diagram. Then we manage to show that [A] ∈ I,i.e. R′ = HomMotA/I(1, [A])

is trivial, which can be achieved by requiring some certain mild conditions on the ring map
A→ B.

Remark. Here we use motive since we only need to show the descent property after taking
additive invariant K.

However to take finite localization into account, we can furthermore loosen the condition
that the above diagram need not to be an actual limit diagram, but only a limit diagram after
the finite localizations. We’ll establish ε-enlargement to describe this property.

At the end of section, we’d also like to mention the result doesn’t need to be restricted to
Galois extensions, since the limit diagram we examine in the main proof is actually a faithful-
flat-descent-type diagram. We’ll prove an abstract result and then illustrating some explicit
examples including Galois descent and some other descent property for ring extensions.
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1.3 Notations

1. Catperf
∞ is the ∞-category of idempotent-complete, small, stable ∞-categories and exact

functors between them, endowed with Lurie tensor product.

2. Define the commutative algebra objects in it to be CAlg(Catperf
∞ ).

Given C ∈ CAlg(Catperf
∞ ), let 1 be its unit, given an object X ∈ C, write πk(X) =

πk HomC(1, X).

3. PrLst is the ∞-category of presentable stable ∞-categories and cocontinuous functors be-
tween them, endowed with Lurie tensor product. Similarly define PrL.

4. We use Ĉatperf
∞ to represent the∞-category of not necessarily small, idempotent-complete

stable ∞-categories and exact functors between them. We ignore the slight set-theoretic
problem and still freely talk about CAlg(Catperf

∞ ).

5. Ln denote the Bousfield localization at Morava E theory, i.e. LEn . Lf
n denote the finite

localization of type n. By saying finite localization, we refer to the localization LT (0)⊕···T (n)

where T (i) is a telescope of a finite complex of type n.

We also remark that these localizations can be upgraded as a localization in presentable
stable ∞-categories, since these are modules over Sp.

6. A thick subcategory T of a stable, idempotent-complete ∞-category C is a stable full
subcategory which is also idempotent-complete.

Remark. It is equivalent to say that a thick subcategory of a stable, idempotent-complete ∞-
category is a full subcategory such that it contains zero object, closed under cofiber, fiber and
retract.

This is because by [HAHA, Lemma 1.2.4.6], the problem can be reduced to homotopy category
(which is triangulated). Now one finds that closed under retracts (in homotopy category) is
precisely closed under direct summands, however given an idempotent e : A → A, since C
idempotent complete, we have split idempotent in C, say A → B → A. One directly find that
B → A → A/B left split, hence A ' B ⊕ A/B in the homotopy category, hence B is also in
this subcategory, which shows the equivalences.

2 ε-nilpotence: deviation in the sense of finite localizations

2.1 ε-enlargement

Definition 2.1 (ε-enlargement). Let C ∈ Ĉatperf
∞ and T ⊆ C a thick subcategory.

1. Given a finite spectrum F , define TF to be the smallest thick subcategory of C containing
T and {F ⊗ C}C∈C
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2. Let Σ be a finite set of prime numbers, define thick subcategory

Tε,Σ =
∩
F

TF

where F ranges over all finite spectra whose p-localization is nontrivial for every p ∈ Σ

3. Define the ε-enlargement of T to be:

Tε =
∪
Σ

Tε,Σ

We also have the ”absolute” version of ε-enlargement.

Definition 2.2 (ε-object). Suppose T = {0}, we write Nilε(C) = Tε the subcategory of ε-
objects. Similarly we write Nilε,Σ(C).

A morphism f : X → Y is called an ε-equivalence if its cofiber is an ε-object.

We only demonstrate some crucial property of ε-enlargement.
By definition it is preserved under exact functor:

Proposition 2.3. G : C → D in Ĉatperf
∞ (an exact functor), suppose T ⊆ C, T ′ ⊆ D are thick

subcategories, G(T ) ⊆ T ′, then G(Tε) ⊆ T ′
ε

Proof. We only show that G(TF ) ⊆ T ′
F , which can be reduced to the problem that G commutes

with smashing with F , i.e. F ⊗G(X) = G(F ⊗X).
This is because G is exact, hence G((F ∪S[n])⊗X) = G(F ⊗X ∪S[n]⊗X) = G(F ⊗X)∪

G(S[n]⊗X).
We proceed induction on cell structure on F , hence by induction hypothesis, G((F ∪S[n])⊗

X) = X ⊗G(F ) ∪X[n] = (F ∪ S[n])⊗X.

The key characterization of ε-enlargement is that it vanishes under finite localizations.

Proposition 2.4. Let C ∈ Ĉatperf
∞ and let T be a thick subcategory. For any p and n, Lf

nT =

Lf
nTε. The same holds for Ln since Ln = LnL

f
n.

Proof. We only have to prove Lf
nTε ⊆ Lf

nT . Let Σ be an arbitrary finite set of primes, and F

be a finite complex such that q-localization of F is not zero and Lf
nF = 0.

Then by the definition of ε-enlargement, Tε,Σ ⊆ TF . However by definition Lf
nTF = Lf

nT
since Lf

n is smashing, hence the result.

Remark. We can actually strengthen this result by the following two propositions.

Proposition 2.5. C ∈ Catperf
∞ , T ⊆ C be a thick subcategory, then X ∈ Tε ⇐⇒ its image in C/T

is an ε-object.

Theorem 2.6. C ∈ Ĉatperf
∞ , X ∈ C is an ε-object if and only if the following equivalent conditions

holds:
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1. T (n)∗EndC(X) = 0, ∀n ∈ [0,∞), p.

2. For any exact functor F : C → LT (n)Sp, the image of X is zero.

The same holds for K(n).

In the end of this subsection we remark that ε-enlargement preserves thick ⊗-ideal in
monoidal presentable stable idempotnet complete ∞-category.

Proposition 2.7. C ∈ CAlg(Ĉatperf
∞ ), if I ⊆ C preserves thick ⊗-ideal (X ∈ I, Y ∈ C =⇒

X ⊗ Y ∈ I), then Iε is also a thick ⊗-ideal.

Proof. It suffices to show that ∀Y ∈ C, Y ⊗ − maps Iε into Iε. By theorem 2.32.3, it suffices to
check Y ⊗ − maps I into I since Y ⊗ − is exact. However this is guaranteed by I is a thick
⊗-ideal.

2.2 ε-nilpotent tower

In this subsection we use the language of ε-tower to build the basic framework in examining
the limit diagram computing homotopy fixed point (or more generally descent).

Definition 2.8. Let C ∈ Ĉatperf
∞ , Tow(C) = Fun(Zop

≥0, C). We note that Tow(C) ∈ Ĉatperf
∞ as

well.

1. Townil(C) ⊆ Tow(C) denote the full subcategory spanned by those towers {Xi} such that
∃N ∈ Z≥0, ∀i ∈ Z≥0, Xi+N → Xi is null-homotopic. Such tower is called nilpotent.

2. Towconst(C) denote the thick subcategory generated by Townil(C) and the constant towers.
Such tower is called quickly converging.

3. Towε,nil(C) := (Townil(C))ε.

4. Given an object X ∈ C and a tower {Xi} ∈ Tow(C), we say the map of tower {X → Xi}
exhibits X as an ε-nilpotent limit of the tower {Xi} if the cofiber tower {Xi/X} belongs
to Towε,nil(C).

5. Given an augmented cosimplicial object X• ∈ Fun(∆+, C), we say it is an ε-nilpotent
limit diagram if {X−1 → Toti(X•)} exhibits ε-nilpotent limit.

Remark. Directly by theorem 2.32.3, we have all these properties preserved under exact functors.

The key property of ε-nilpotent diagram is that it becomes actual limit diagram after taking
finite localizations.

Proposition 2.9. Let C ∈ Catperf
∞ , suppose X• ∈ Fun(∆+, C) is an ε-nilpotent limit diagram,

then:

1. X−1 → Tot(X•) is an ε-equivalence
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2. {Lf
n Toti(X•)} is quick converging

3. Both maps
Lf
nX

−1 → Lf
n Tot(X•)→ Tot(Lf

nX
•)

are equivalences.

Proof. We first prove item 1 and 3. Set {Yi} = {Toti(X•)/X−1}, it suffices to show that if
{Yi} ∈ Towε,nil(C), then lim←−Yi is an ε-object, and Lf

n lim←−Yi ' lim←−Lf
nYi ' 0. (Localization

functors are exact).
Now we consider the three functors

F1, F2, F3 : Tow(C)→ C

F1({Yi}) = Lf
n lim←−Yi, F2({Yi}) = lim←−Lf

nYi, F3({Yi}) = lim←−Yi

By theorem 2.32.3, the image of F1, F2, F3 lies in the corresponding ε-enlargement. For F1, F2,
since the image are both Lf

n-local, theorem 2.42.4 furthermore guarantee that these are zero.
For item 2, it suffices to show that if {Yi} ∈ Towε,nil(C), then {Lf

nYi} ∈ Townil(C)(since Yi

is obtained by quotienting a constant tower). Again theorem 2.42.4 leads to the result.

Now we discuss about a certain type of tower: cobar complexes.

Definition 2.10. Let C ∈ CAlg(Ĉatperf
∞ ), define NilA the thick ⊗-ideal generated by A, we call

an object in it a A-nilpotent object.
Define NilA,ε = (NilA)ε be its ε-enlargement and call this the subcategory of (A, ε)-nilpotent

objects.

The key property of (A, ε)-nilpotence is the following:

Theorem 2.11. Let C ∈ CAlg(Ĉatperf
∞ ), A ∈ Alg(C). If X ∈ C is A-nilpotent, then CB•

aug(A)⊗
X is a limit diagram, furthermore the associated tower {Toti(CB•(A)⊗X)/X} is nilpotent.

Proof. Consider the subcategory I consists of all X such that {Toti(CB•(A)⊗X)/X} is nilpo-
tent. I is automatically ⊗-ideal since M → N null-homotopic =⇒ M ⊗ P → N ⊗ P

null-homotopic.
We prove that I is also thick, this is because we only need to check closeness under cofiber,

translation and retract. For cofiber this is because

Toti(CB•(A)⊗ (Y /X))/(Y /X) =
Toti(CB•(A)⊗ Y )/Y

Toti(CB•(A)⊗X)/X

for translation this is obvious. For retract: suppose Y → X → Y is idY , i.e. Y is retract of X,
then the map

Toti(CB•(A)⊗ Y )/Y → Toti(CB•(A)⊗X)/X → Toti(CB•(A)⊗ Y )/Y
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is also an retract. However retract of an zero morphism is zero, since one can check the diagram:

• •

• •

• •

i i

0

r r

Now we show that I is thick ⊗-ideal, it suffices to prove A ∈ I. However this is true since
by direct computation, we have:

Totn(CB•(A)⊗A) = cofib(Ā⊗(n+1) ⊗A→ A)

where Ā = fib(1 → A). (For detailed computation of this totalization, we refer to [MNN17MNN17,
Section 2.1])

Hence by the following diagram

0 Ā⊗(n+1) ⊗A Ā⊗(n+1) ⊗A

A A 0

A Totn(CB•(A)⊗A) Totn(CB•(A)⊗A)/A

we have
Totn(CB•(A)⊗A)/A ' Σ(Ā⊗n+1 ⊗A)

However Ā ⊗ A → A is the fiber of A → A ⊗ A, while this map has a section, hence the fiber
must be null-homotopic, hence we get the result.

Corollary 2.12. Let C, A same as previous theorem, suppose X is (A, ε)-nilotent, then the aug-
mented cosimplicial object CB•(A)aug⊗X is an ε-nilpotent limit diagram, here the augmentation
of CB•(A) at point (−1) is given by the tensor unit 1.

Proof. One consider the exact functor C → Tow(C):

X 7→ {Toti(CB•(A)⊗X)/X}

Previous theorem shows that this functor maps NilA into Townil, hence by theorem 2.32.3 it maps
NilA,ε into Townil,ε.

3 General results

First we prove the following result to show a object is a (R, ε)-nilpotent, which can be
furthermore used to deduce the descent result.

Theorem 3.1. Let C ∈ CAlg(Ĉatperf
∞ ), R ∈ CAlg(C), suppose exists M ∈ C and map M → R

in C such that the image π0(M)⊗Q→ π0(R)⊗Q contains the unit, then R ∈ NilM,ε
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Proof. Let N be a positive integer such that (π0M)[N−1]→ (πnR)[N−1] with image containing
the unit. Let Σ be the set of prime factors of N . We prove that R ∈ (NilM )ε,Σ.

Fix any finite spectra F such that F has non-trivial localization ∀p ∈ Σ. It suffices to show
R lies in the thick ⊗-ideal generated by M and F ⊗ 1. We denote this ideal by J .

Hence it’s equivalent to show R̄ ∈ C/J is zero, hence equivalent to show E∞-ring spectra
B = HomC/J(1, R̄) is zero.

Now that the condition ensures exists 1 → M such that its composition with M → R is
Nk ∈ π0(R). Passing to C/J , since M is mapped to zero, this shows that in π0B,Nk = 0.

This shows that for p - N , HFp ⊗ B = 0 and HQ ⊗ B = 0 (since Nk is unit in HFp,HQ
homology).

Now if p|N ,

B ⊗ F = HomC/J(1, R̄)⊗ F = HomC/J (1, F ⊗ R̄) = 0

However F has nontrivial Fp homology, while HFp∗(B ⊗ F ) = 0, by Kunneth HFp ⊗B = 0

Previous discussion shows that HZ ⊗ B = 0, by nilpotence theorem for E∞-ring spectra,
this shows π∗B is nilpotent. However this implies 1 ∈ π∗B is nilpotent hence zero, hence the
result.

Corollary 3.2. Let C ∈ CAlg(Ĉatperf
∞ ), R ∈ CAlg(C), A ∈ Alg(C). Suppose exists A-module M

and a map M → R in C such that the image of π0M ⊗ Q → π0R ⊗ Q contains the unit, then
R ∈ NilA,ε, hence CB•

aug(A)⊗R is an ε-nilpotent limit diagram.

To put the previous result in practice, since we’re dealing with K-theory, we actually don’t
need to remember the entire information of category of perfect modules, but only its additive
invariant. The framework is built in [BGT13BGT13] and its generalization on R-linear case.

Definition 3.3 (Additive invariant). Given R ∈ CAlg(Catperf
∞ ), we say a functor is R-linear

additive invariant if it sends 0 to 0, split exact sequence to cofiber sequence.

Definition-Theorem 3.4. There exists a presentable symmetric monoidal stable ∞-category
Madd

R satisfying the following property:
There exists an additive invariant Uadd : ModR(Catperf

∞ )→Madd
R and an equivalence

FunL(Madd
R ,D)→ Funadd(ModR(Catperf

∞ ),D)

for any presentable stable D, where the equivalence is induced by Uadd. FunL denotes cocontin-
uous functors and Funadd denotes additive invariants.

Remark. For set-theoretic issue, we always assume that when saying the module category
ModR(Catperf

∞ ), we are actually talking about the κ-compact object of the module category,
where κ is a regular cardinal.(Hence the κ-compact object is closed under pushouts, retracts,
and R-linear tensor) In practice, we always assume that κ is large enough.
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Definition-Theorem 3.5. For C ∈ ModR(Catperf
∞ ) we define the R-linear (connective) K-

theory
KR(C) = MapMadd

R
(Uadd(R),Uadd(C)) ∈ Sp

Moreover when R = Spω, KR reduced to usual K-theory.

Now we apply these results on Madd
R .

Theorem 3.6. Let R ∈ CAlg(Catperf
∞ ), A ∈ Alg(ModR(Catperf

∞ )). Suppose there exists an
R-linear functor A → R whose image on K0(−) ⊗ Q contains a unit, then the augmented
cosimplicial object in Madd

R

Uadd(R)→ (Uadd(A) ⇒ Uadd(A⊗R A) · · · )

is an ε-nilpotent diagram.

Proof. Apply theorem 3.23.2 with C =Madd
R , R = Uadd(R) and M = A = Uadd(A). We only have

to verify the map (π0M → π0R) is rationally epi.
However this is exactly saying KR

0 (A) → KR
0 (R) is rationally epi. By a comparison

theorem we do have KR
0
∼= K0, hence the result.

4 Examples and applications

First we state the most basic example.

Theorem 4.1. Let A an E∞-ring, B an E2-algebra in the ∞-category of A-modules. Suppose
B is a perfect A module and the map K0(B)⊗Q→ K0(A)⊗Q has image containing the unit.

Suppose F is an additive invariant of ModPerf(A)(Catperf
∞ ), then the augmented cosimplicial

diagram
F (Perf(A))→ (F (Perf(B)) ⇒ F (Perf(B ⊗A B)) · · · )

is an ε-nilpotent limit diagram. As a consequence the associated Tot tower is quickly convergent
after Lf

n.

Proof. Apply theorem 3.63.6 with R = Perf(A),A = Perf(B). (B is E2 ensures the perfect module
category is monoidal). The R-linear functor A → R is given by forgetful functor.

[HAHA, Section 4.8.5] ensures that the functor from A-algebra to ModPerf(A)(Catperf
∞ ) given

by B′ 7→ Perf(B′) is monoidal, hence we have Perf(B ⊗A ⊗B) ' Perf(B) ⊗Perf(A) ⊗Perf(B).
Hence the results naturally follows since F factor through an exact functor (since D is stable),
and exact functor preserve ε-nilpotent limit diagram by section 2.2thesubsection2.2thesubsection.

Now we examine the descent result in some concrete settings.
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4.1 Fppf descent for discrete ring

Proposition 4.2. Let A→ B be a morphism of E∞-ring spectra, suppose:

1. π0(B) is a faithfully flat, finite and projective π0(A)-module

2. The canonical map π∗(A)⊗π0(A) π0(B)→ π∗(B) is an isomorphism

Then the hypotheses of theorem 4.14.1 is satisfied.

Proof. B is a finitely generated projective A-module (hence perfect) comes from the following
technical lemma:

Lemma 4.3. Let A be an E1-ring, and M an A-module such that π0(M) is projective over
A; π∗(M) ∼= π∗(A) ⊗π0(A) π0(M). Then M is projective over A. Moreover if π0M is finitely
generated, then M is finitely generated projective A module.

To show that the hypotheses of theorem 4.1 is satisfied, we note that if X → Y satisfies
the condition, then so is X ′ ⊗ Y ⊗X X ′. Hence it suffices to prove τ≥0A → τ≥0B satisfies the
condition since B ' A⊗τ≥0A τ≥0B.

Hence we assume A,B are both connective itself. In this case, K0(A) = K0(π0A) by
[LuraLura, Lecture 20, Corollary 3]. Hence the problem is now reduced to a pure classical algebraic
problem, i.e. given two (ordinary) ring R→ S such that S is faithfully flat, finite and projective
R-module, we have to check [S] ∈ K0(R)⊗Q is a unit.

Since Q is faithfully flat finite projective module, dimκ(p) S ⊗R κ(p) is a constant, say n.
Moreover one can find a finite open cover X = ∪ri=1Ui, such that x := [P ] − n vanishes in
K0(Ui). ([StackStack, Lemma 10.78.2])

Hence by Zariski descent for algebraic K-theory, consider the sequence:

K1(U1 ∩ U2)→ K0(R)→ K0(U1)⊕K0(U2)

Since x, x2 ∈ K0(R) has zero image in K0(U1)⊕K0(U2), both of the elements has a preimage in
K1(U1∩U2), say a, x ·a. However the action of K0(R) on K1(U1∩U2) comes from its restriction
to K0(U1 ∩ U2), hence x · a = 0 ∈ K1(U1 ∩ U2). As a result x2 = 0 ∈ K0(R).

For general open covering given by r open sets, we can deduce by induction that xr = 0 ∈
K0(R).

Hence [P ] = n(1 +
[P ]− n

n
) is a rational unit, since 1 +

[P ]− n

n
is the inverse of 1 +∑

r

(n− [P ])r

nr
.

Corollary 4.4. When restricted to discrete rings, localized algebraic K-theory satisfies fppf
descent.

Proof. By [StackStack, Section 37.48], one suffices to check descent property with respect to Zariski
cover and surjective finite locally free morphisms, which are guarenteed by the previous propo-
sition.
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4.2 Galois descent for E∞-ring

In this subsection, we restrict our sight only to Galois extension.

Theorem 4.5. Let A → B a G-Galois extension of E∞-ring spectra (in the sense of [Rog08Rog08])
where G is finite. Suppose the image of the map K0(B) ⊗ Q → K0(A) ⊗ Q contains the unit,
then

1. K(A)→ K(B)hG is an ε-equivalence

2. The tot-tower computing Lf
nK(B)hG is quickly converging

3. Both maps
Lf
nK(A)→ Lf

n(K(B)hG)→ (Lf
nK(B))hG

are equivalences

Proof. B is dualizable by [Rog08Rog08, Proposition 6.2.1], hence perfect. By theorem 4.14.1, the cobar
construction B⊗AB⊗· · · turns into resolution computing homotopy fixed point, since B⊗AB '∏

g∈GB.
On the other hand B 7→ Perf(B) 7→ Uadd(Perf(B)) 7→ K(Perf(B)) preserves finite products,

hence the result.

Corollary 4.6. The descent spectral sequence computing Lf
nK(A) has a horizontal vanishing

line.

Proof. This is auotmatic by the fact that tot-tower is quickly converging, hence the filtration
index is bounded.

We now take a closer look at the technical condition ensuring Galois descent:

Lemma 4.7. Let A → B a G-Galois extension of E∞-ring spectra where G is finite, then the
following are equivalent:

1. K0(B)⊗Q→ K0(A)⊗Q contains a unit

2. [B] ∈ K0(A)⊗Q is a unit

3. [B] = |G| ∈ K0(A)⊗Q

Proof. 3 =⇒ 2 =⇒ 1 is trivial.
1 =⇒ 3. Consider i∗ : K0(A)⊗Q→ K0(B)⊗Q and i∗ : K0(B)⊗Q→ K0(A)⊗Q.
Say x ∈ K0(B)⊗Q s.t. i∗(x) = 1. However we have:

i∗ ◦ i∗([M ]) = [M ⊗A B] = [M ⊗B B ⊗A B] = [M ⊗B

∏
G

B] = |G| · [M ]

Hence in K0(B), |G| · x = i∗ ◦ i∗(x) = i∗(1) = [B]. Hence in K0(A), [B] = |G|.
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We say a G-Galois extension satisfies condition A if it satisfies the previous equivalent
statements.

Proposition 4.8. Consider the C2-Galois extension KO → KU . It satisfies condition A and
K(KO)→ K(KU)hC2 is a ε-equivalence.

Proof. Consider [KU ] ∈ K0(KO), by wood’s theorem KO⊗Σ−2CP 2 ' KU . Since [Σ−2CP 2] =

[S0∪S2] = 2 ∈ K0(S), [KU ] = 2 ∈ K0(KO), hence the condition A is satisfied, the rest naturally
follows.
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